Skip to main content

Part of the book series: Springer Praxis Books ((ENVIRONSCI))

  • 2207 Accesses

Abstract

In Chapters 20–23, numerical schemes of hydrostatic primitive equations using the spectral method have been described. As introduced in Chapter 20, however, the recent progress in computer resources has enabled us to drastically increase the horizontal resolution of global models, say, less than 10 km. For these highresolution simulations, we need to switch the governing equations from hydrostatic equations to nonhydrostatic equations. In the following three chapters (Chapters 24–26), numerical schemes of global nonhydrostatic models are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 179.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and suggested reading

  • Arakawa, A. and Lamb, V.R., 1977: Computational design of the basic dynamical processes of the UCLA general circulation model. Methods in Computational Physics, 17, 173–265.

    Google Scholar 

  • Arakawa, A. and Suarez, M. J., 1983: Vertical differencing of the primitive equations in sigma coordinates. Mon. Wea. Rev., 111, 34–45.

    Article  Google Scholar 

  • Doms, G. and Schättler, U., 1997: The nonhydrostatic limited-area model LM (Lokal-Modell) of DWD. Part I: Scientific Documentation. Deutscher Wetterdienst, 174 pp.

    Google Scholar 

  • Durran, D.R., 2010: Numerical Methods for Fluid Dynamics with Applications to Geophysics, 2nd ed. Springer, New York, 516 pp.

    Google Scholar 

  • Durran, D.R. and Klemp, J., 1983: A compressible model for the simulation of moist mountain waves. Mon. Wea. Rev., 111, 2341–2361.

    Article  Google Scholar 

  • Gallus, W. Jr. and Ranˇci´c, M., 1996: A non-hydrostatic version of the NMC’s regional Eta model. Q. J. R. Meteorol. Soc., 122, 495–513.

    Google Scholar 

  • Held, I.M., Hemler, R. S., and Ramaswamy, V., 1993: Radiative-convective equilibrium with explicit two-dimensional moist convection. J. Atmos. Sci., 50, 3909–3927.

    Article  Google Scholar 

  • Juang, H.-M.H., 1992: A spectral fully compressible nonhydrostatic mesoscale model in hydrostatic sigma coordinates: Formulation and preliminary results. Meteorol. Atmos. Phys., 50, 75–88.

    Article  Google Scholar 

  • Klemp, J. B. and Wilhelmson, R.B., 1978: The simulation of three-dimensional convective storm dynamics. J. Atmos. Sci., 35, 1070–1096.

    Article  Google Scholar 

  • Klemp, J.B., Skamarock, W. C., and Dudhia, J., 2007: Conservative split-explicit time integrationmethods for the compressible nonhydrostatic equations. Mon. Wea. Rev., 135, 2897–2913.

    Article  Google Scholar 

  • Laprise, R., 1992: The Euler equations of motion with hydrostatic pressure as independent variable. Mon. Wea. Rev., 120, 197–207.

    Article  Google Scholar 

  • Ogura, Y. and Phillips, A., 1962: Scale analysis of deep and shallow convection in the atmosphere. J. Atmos. Sci., 19, 173–179.

    Article  Google Scholar 

  • Ooyama, K.V., 1990: A thermodynamic foundation for modeling the moist atmosphere. J. Atmos. Sci., 47, 2580–2593.

    Article  Google Scholar 

  • Saito, K, Ishida, J., Aranami, K., Hara, T., Segawa, T., Narita, M., and Honda, Y., 2007: Nonhydrostatic atmospheric models and operational development at JMA. J. Meteor. Soc. Japan, 85B, 271–304.

    Article  Google Scholar 

  • Satoh, M., 2002: Conservative scheme for the compressible non-hydrostatic models with the horizontally explicit and vertically implicit time integration scheme. Mon. Wea. Rev., 130, 1227–1245.

    Article  Google Scholar 

  • Satoh, M., 2003: Conservative scheme for a compressible nonhydrostatic model with moist processes. Mon. Wea. Rev., 131, 1033–1050.

    Article  Google Scholar 

  • Skamarock, W. C. and Klemp, J.B., 1992: The stability of time-split numerical methods for the hydrostatic and the nonhydrostatic elastic equations. Mon. Wea. Rev., 120, 2109–2127.

    Article  Google Scholar 

  • Skamarock, W. C. and Klemp, J.B., 1994: Efficiency and accuracy of the Klemp- Wilhelmson time-splitting technique. Mon. Wea. Rev., 122, 2623–2630.

    Article  Google Scholar 

  • Straka, J.M., Wilhelmson, R.B., Wicker, L. J., Anderson, J.R., and Droegemeier, K. K., 1993: Numerical solutions of a nonlinear density current: A benchmark solution and comparisons. Int. J. Num. Methods Fluids, 17, 1–22.

    Article  Google Scholar 

  • Taylor, K.E., 1984: A vertical finite-difference scheme for hydrostatic and nonhydrostatic equations. Mon. Wea. Rev., 112, 1398–1402.

    Article  Google Scholar 

  • Tompkins, A.M. and Craig, G. C., 1998a: Time-scales of adjustment to radiativeconvective equilibrium in the troposphere. Q. J. Roy. Meteorol. Soc., 124, 2693–2713.

    Google Scholar 

  • Tompkins, A. M. and Craig, G.C., 1998b: Radiative-convective equilibrium in a three-dimensional cloud ensemble model. Q. J. Roy. Meteorol. Soc., 124, 2073–2097.

    Google Scholar 

  • Tompkins, A.M. and Craig, G. C., 1999: Sensitivity of tropical convection to sea surface temperature in the absence of large-scale flow. J. Clim., 12, 462–476.

    Article  Google Scholar 

  • Xue, M., Droegemeier, K.K., and Wong, V., 2000: The Advanced Regional Prediction System (ARPS) - A multi-scale nonhydrostatic atmospheric simulation and prediction model. Part I: Model dynamics and verification. Meteor.

    Google Scholar 

  • Atmos. Physics, 75, 161–193.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Satoh, M. (2014). Nonhydrostatic modeling. In: Atmospheric Circulation Dynamics and General Circulation Models. Springer Praxis Books(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13574-3_24

Download citation

Publish with us

Policies and ethics