Global energy budget

  • Masaki Satoh
Part of the Springer Praxis Books book series (PRAXIS)


To characterize the global atmosphere, globally averaged quantities of the whole atmosphere can be used. Corresponding to the governing equations of the atmosphere (i.e, the conservations of mass, momentum, and energy), we obtain the global budgets of conserved quantities: mass, angular momentum, and energy.


Energy Budget Climate Sensitivity Outgoing Longwave Radiation Total Potential Energy Latent Heat Release 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and suggested reading

  1. Chandrasekhar, S., 1958: An Introduction to the Study of Stellar Structure. Dover, New York, 507 pp.Google Scholar
  2. Chandrasekhar, S., 1961: A theorem on rotating polytropes. Astrophys. J., 134, 662–664.CrossRefGoogle Scholar
  3. Crowley, T. J. and North, G.R., 1991: Paleoclimatology. Oxford University Press, Oxford, UK, 339 pp.Google Scholar
  4. Gierasch, P., Goody, R., and Stone, P., 1970: The energy balance of planetary atmosphere. Geophys. Fluid Dynamics, 1, 1–18.CrossRefGoogle Scholar
  5. Golitsyn, G. S., 1970: A similarity approach to the general circulation of planetary atmospheres. Icarus, 13, 1–24.CrossRefGoogle Scholar
  6. Held, I.M. and Soden, B. J., 2000: Water feedback and global warming. Ann.Rev. Energy Environ., 25, 441–475.CrossRefGoogle Scholar
  7. IPCC, 1996: Climate Change 1995. The Science of Climate Change. Intergovernmental Panel on Climate Change, J.Houghton, L.G.Meira Filho, B.A. Callander, N. Harris, A.Kattenberg, K.Maskell, eds. Cambridge University Press, Cambridge, UK, 572 pp.Google Scholar
  8. IPCC, 2001: Climate Change 2001. The Science Basis. Intergovernmental Panel on Climate Change, J.Houghton, Y.Ding, D. J.Griggs, M.Noguer, P. J. van der Linden, X. Dai, K.Maxwell, and C.A. Johnson, eds. Cambridge University Press, Cambridge, UK, 881 pp.Google Scholar
  9. IPCC, 2007: Climate Change 2007. The Physical Science Basis. Intergovernmental Panel on Climate Change, S. Solomon, D.Qin, M.Manning, M.Marquis, K. Averyt, M.M.B.Tignor, H. L. Miller, Jr., and Z.Chen, eds. CambridgeGoogle Scholar
  10. University Press, Cambridge, UK, 996 pp.Google Scholar
  11. Kiehl, J.T. and Trenberth, K. E., 1997: Earth’s annual global mean energy budget. Bull.Am. Meteorol. Soc., 78, 197–208.CrossRefGoogle Scholar
  12. Landau, L. and Lifshitz, E.M., 1996: Statistical Physics, 3rd ed. Butterworth- Heinemann, Oxford, UK, 544 pp.Google Scholar
  13. Lebovitz, N.R., 1961: The virial tensor and its application to self-gravitational fluid. Astrophys. J., 134, 500–536.CrossRefGoogle Scholar
  14. Lorenz, E.N., 1957: Available potential energy and the maintenance of the general circulation. Tellus, 7, 157–167.Google Scholar
  15. Lorenz, E.N., 1967: The Nature and Theory of the General Circulation of the Atmosphere. World Meteorological Organization, Geneva, 161 pp.Google Scholar
  16. Matsuda, Y., 2000: Planetary Meteorology. University of Tokyo Press, Tokyo, 205 pp. (in Japanese)Google Scholar
  17. Peixoto, J.P., Oort, A.H., De Almeida, M., and Tome, A., 1991: Entropy budget of the atmosphere. J. Geophys. Res., 96, 10981–10988.CrossRefGoogle Scholar
  18. Pauluis, O. and Held, I., 2002: Entropy budget of an atmosphere in radiativeconvective equilibrium. Part II: Latent heat transport and moist processes. J.Atmos. Sci., 59, 140–149.Google Scholar
  19. Salmon, R., 1988: Hamiltonian Fluid Mechanics. Ann.Rev. Fluid Mech., 20, 225–256.CrossRefGoogle Scholar
  20. Shepherd, T.G., 1993: A unified theory of available potential energy. Atmosphere- Ocean, 31, 1–26.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Masaki Satoh
    • 1
  1. 1.Atmosphere and Ocean Research InstituteThe University of TokyoKashiwaJapan

Personalised recommendations