Skip to main content

Proof Complexity of Non-classical Logics

  • Conference paper
Theory and Applications of Models of Computation (TAMC 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6108))

Abstract

Proof complexity is an interdisciplinary area of research utilizing techniques from logic, complexity, and combinatorics towards the main aim of understanding the complexity of theorem proving procedures. Traditionally, propositional proofs have been the main object of investigation in proof complexity. Due their richer expressivity and numerous applications within computer science, also non-classical logics have been intensively studied from a proof complexity perspective in the last decade, and a number of impressive results have been obtained. In this paper we give the first survey of this field concentrating on recent developments in proof complexity of non-classical logics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alon, N., Boppana, R.B.: The monotone circuit complexity of boolean functions. Combinatorica 7(1), 1–22 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  2. Alekhnovich, M., Ben-Sasson, E., Razborov, A.A., Wigderson, A.: Pseudorandom generators in propositional proof complexity. SIAM Journal on Computing 34(1), 67–88 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  3. Ajtai, M.: The complexity of the pigeonhole-principle. Combinatorica 14(4), 417–433 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bonet, M.L., Buss, S.R., Pitassi, T.: Are there hard examples for Frege systems? In: Clote, P., Remmel, J. (eds.) Feasible Mathematics II, pp. 30–56. Birkhäuser, Basel (1995)

    Google Scholar 

  5. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge Tracts in Theoretical Computer Science, vol. 53. Cambridge University Press, Cambridge (2001)

    MATH  Google Scholar 

  6. Beame, P.W., Impagliazzo, R., Krajíček, J., Pitassi, T., Pudlák, P., Woods, A.: Exponential lower bounds for the pigeonhole principle. In: Proc. 24th ACM Symposium on Theory of Computing, pp. 200–220 (1992)

    Google Scholar 

  7. Beame, P.W., Impagliazzo, R., Krajíček, J., Pitassi, T., Pudlák, P.: Lower bounds on Hilbert’s Nullstellensatz and propositional proofs. Proc. London Mathematical Society 73(3), 1–26 (1996)

    Article  MATH  Google Scholar 

  8. Buss, S.R., Mints, G.: The complexity of the disjunction and existential properties in intuitionistic logic. Annals of Pure and Applied Logic 99(1-3), 93–104 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  9. Beyersdorff, O., Meier, A., Müller, S., Thomas, M., Vollmer, H.: Proof complexity of propositional default logic. In: Proc. 13th International Conference on Theory and Applications of Satisfiability Testing. LNCS. Springer, Heidelberg (2010)

    Google Scholar 

  10. Bonatti, P.A., Olivetti, N.: Sequent calculi for propositional nonmonotonic logics. ACM Transactions on Computational Logic 3(2), 226–278 (2002)

    Article  MathSciNet  Google Scholar 

  11. Buss, S.R., Pudlák, P.: On the computational content of intuitionistic propositional proofs. Annals of Pure and Applied Logic 109(1-2), 49–63 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  12. Beame, P.W., Pitassi, T., Impagliazzo, R.: Exponential lower bounds for the pigeonhole principle. Computational Complexity 3(2), 97–140 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  13. Bonet, M.L., Pitassi, T., Raz, R.: Lower bounds for cutting planes proofs with small coefficients. The Journal of Symbolic Logic 62(3), 708–728 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  14. Bonet, M.L., Pitassi, T., Raz, R.: On interpolation and automatization for Frege systems. SIAM Journal on Computing 29(6), 1939–1967 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  15. Ben-Sasson, E., Wigderson, A.: Short proofs are narrow - resolution made simple. Journal of the ACM 48(2), 149–169 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  16. Clegg, M., Edmonds, J., Impagliazzo, R.: Using the Groebner basis algorithm to find proofs of unsatisfiability. In: Proc. 28th ACM Symposium on Theory of Computing, pp. 174–183 (1996)

    Google Scholar 

  17. Cook, S.A., Reckhow, R.A.: The relative efficiency of propositional proof systems. The Journal of Symbolic Logic 44(1), 36–50 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  18. Cadoli, M., Schaerf, M.: A survey of complexity results for nonmonotonic logics. Journal of Logic Programming 17(2/3&4), 127–160 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  19. Dowd, M.: Model-theoretic aspects of P≠NP (1985) (unpublished manuscript)

    Google Scholar 

  20. Ferrari, M., Fiorentini, C., Fiorino, G.: On the complexity of the disjunction property in intuitionistic and modal logics. ACM Transactions on Computational Logic 6(3), 519–538 (2005)

    Article  MathSciNet  Google Scholar 

  21. Friedman, H.: One hundred and two problems in mathematical logic. The Journal of Symbolic Logic 40(2), 113–129 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  22. Ghilardi, S.: Unification in intuitionistic logic. The Journal of Symbolic Logic 64(2), 859–880 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  23. Gottlob, G.: Complexity results for nonmonotonic logics. Journal of Logic and Computation 2(3), 397–425 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  24. Haken, A.: The intractability of resolution. Theoretical Computer Science 39, 297–308 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  25. Hrubeš, P.: A lower bound for intuitionistic logic. Annals of Pure and Applied Logic 146(1), 72–90 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  26. Hrubeš, P.: Lower bounds for modal logics. The Journal of Symbolic Logic 72(3), 941–958 (2007)

    Article  MATH  Google Scholar 

  27. Hrubeš, P.: On lengths of proofs in non-classical logics. Annals of Pure and Applied Logic 157(2-3), 194–205 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  28. Iemhoff, R.: On the admissible rules of intuitionistic propositional logic. The Journal of Symbolic Logic 66(1), 281–294 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  29. Jeřábek, E.: Admissible rules of modal logics. Journal of Logic and Computation 15(4), 411–431 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  30. Jeřábek, E.: Frege systems for extensible modal logics. Annals of Pure and Applied Logic 142, 366–379 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  31. Jeřábek, E.: Complexity of admissible rules. Archive for Mathematical Logic 46(2), 73–92 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  32. Jeřábek, E.: Substitution Frege and extended Frege proof systems in non-classical logics. Annals of Pure and Applied Logic 159(1-2), 1–48 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  33. Jeřábek, E.: Admissible rules of Łukasiewicz logic. Journal of Logic and Computation (to appear, 2010)

    Google Scholar 

  34. Jeřábek, E.: Bases of admissible rules of Łukasiewicz logic. Journal of Logic and Computation (to appear, 2010)

    Google Scholar 

  35. Krajíček, J., Pudlák, P.: Propositional proof systems, the consistency of first order theories and the complexity of computations. The Journal of Symbolic Logic 54(3), 1063–1079 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  36. Krajíček, J., Pudlák, P.: Some consequences of cryptographical conjectures for \(S^1_2\) and EF. Information and Computation 140(1), 82–94 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  37. Krajíček, J., Pudlák, P., Woods, A.: Exponential lower bounds to the size of bounded depth Frege proofs of the pigeonhole principle. Random Structures and Algorithms 7(1), 15–39 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  38. Krajíček, J.: Bounded Arithmetic, Propositional Logic, and Complexity Theory. Encyclopedia of Mathematics and Its Applications, vol. 60. Cambridge University Press, Cambridge (1995)

    MATH  Google Scholar 

  39. Krajíček, J.: Interpolation theorems, lower bounds for proof systems and independence results for bounded arithmetic. The Journal of Symbolic Logic 62(2), 457–486 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  40. Krajíček, J.: Tautologies from pseudo-random generators. Bulletin of Symbolic Logic 7(2), 197–212 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  41. Krajíček, J.: Dual weak pigeonhole principle, pseudo-surjective functions, and provability of circuit lower bounds. The Journal of Symbolic Logic 69(1), 265–286 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  42. Ladner, R.E.: The computational complexity of provability in systems of modal propositional logic. SIAM Journal on Computing 6(3), 467–480 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  43. Mints, G., Kojevnikov, A.: Intuitionistic Frege systems are polynomially equivlalent. Journal of Mathematical Sciences 134(5), 2392–2402 (2006)

    Article  MathSciNet  Google Scholar 

  44. Pitassi, T., Santhanam, R.: Effectively polynomial simulations. In: Proc. 1st Innovations in Computer Science (2010)

    Google Scholar 

  45. Pudlák, P.: Lower bounds for resolution and cutting planes proofs and monotone computations. The Journal of Symbolic Logic 62(3), 981–998 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  46. Razborov, A.A.: Lower bounds on the monotone complexity of boolean functions. Doklady Akademii Nauk SSSR 282, 1033–1037 (1985); English translation in: Soviet Math. Doklady 31, 354–357

    MathSciNet  Google Scholar 

  47. Razborov, A.A.: Lower bounds for the polynomial calculus. Computational Complexity 7(4), 291–324 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  48. Reckhow, R.A.: On the lengths of proofs in the propositional calculus. PhD thesis, University of Toronto (1976)

    Google Scholar 

  49. Reiter, R.: A logic for default reasoning. Artificial Intelligence 13, 81–132 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  50. Rybakov, V.V.: Admissibility of logical inference rules. Studies in Logic and the Foundations of Mathematics, vol. 136. Elsevier, Amsterdam (1997)

    Book  MATH  Google Scholar 

  51. Segerlind, N.: The complexity of propositional proofs. Bulletin of Symbolic Logic 13(4), 417–481 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  52. Tseitin, G.C.: On the complexity of derivations in propositional calculus. In: Slisenko, A.O. (ed.) Studies in Mathematics and Mathematical Logic, Part II, pp. 115–125 (1968)

    Google Scholar 

  53. Vollmer, H.: Introduction to Circuit Complexity – A Uniform Approach. Texts in Theoretical Computer Science. Springer, Heidelberg (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Beyersdorff, O. (2010). Proof Complexity of Non-classical Logics. In: Kratochvíl, J., Li, A., Fiala, J., Kolman, P. (eds) Theory and Applications of Models of Computation. TAMC 2010. Lecture Notes in Computer Science, vol 6108. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13562-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13562-0_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13561-3

  • Online ISBN: 978-3-642-13562-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics