Skip to main content

An \({\mathcal{O}}(n^2)\)-time Algorithm for the Minimal Interval Completion Problem

  • Conference paper
  • 782 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6108))

Abstract

The minimal interval completion problem consists in adding edges to an arbitrary graph so that the resulting graph is an interval graph; the objective is to add an inclusion minimal set of edges, which means that no proper subset of the added edges can result in an interval graph when added to the original graph. We give an \({\mathcal{O}}(n^2)\)-time algorithm to obtain a minimal interval completion of an arbitrary graph. This improves the previous O(nm) time bound for the problem and lower this bound for the first time below the best known bound for minimal chordal completion.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arnborg, S., Corneil, D.G., Proskurowski, A.: Complexity of finding embeddings in a k-tree. SIAM J. Algebraic Discrete Methods 8(2), 277–284 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  2. Booth, K.S., Lueker, G.S.: Testing for the consecutive ones property, interval graphs, and graph planarity using PQ-tree algorithms. J. Comput. Syst. Sci. 13(3), 335–379 (1976)

    MATH  MathSciNet  Google Scholar 

  3. Crespelle, C.: Dynamic representations of interval graphs. In: Paul, C., Habib, M. (eds.) WG 2009. LNCS, vol. 5911, pp. 77–87. Springer, Heidelberg (2010), http://www-npa.lip6.fr/~crespell/publications/DynInt.pdf

    Google Scholar 

  4. Gilmore, P.C., Hoffman, A.J.: A characterization of comparability graphs and of interval graphs. Canadian J. Math. 16, 539–548 (1964)

    MATH  MathSciNet  Google Scholar 

  5. Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs, 2nd edn. Annals of Discrete Mathematics, vol. 57. Elsevier, Amsterdam (2004)

    MATH  Google Scholar 

  6. Heggernes, P.: Minimal triangulations of graphs: A survey. Discrete Math. 306(3), 297–317 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  7. Heggernes, P., Mancini, F.: Minimal split completions. Discrete Applied Mathematics 157(12), 2659–2669 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  8. Heggernes, P., Mancini, F., Papadopoulos, C.: Minimal comparability completions of arbitrary graphs. Discrete Applied Mathematics 156(5), 705–718 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  9. Heggernes, P., Suchan, K., Todinca, I., Villanger, Y.: Minimal Interval Completions. In: Brodal, G.S., Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669, pp. 403–414. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  10. Heggernes, P., Telle, J.A., Villanger, Y.: Computing minimal triangulations in time o(n αlogn) = o(n 2.376). SIAM J. Discrete Math. 19(4), 900–913 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  11. Korte, N., Möhring, R.H.: Transitive orientation of graphs with side constraints. In: Trauner, L. (ed.) 11th International Workshop on Graph-Theoretic Concepts in Computer Science (WG 1985), pp. 143–160 (1986)

    Google Scholar 

  12. Korte, N., Möhring, R.H.: An incremental linear-time algorithm for recognizing interval graphs. SIAM J. Comput. 18, 68–81 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  13. Ohtsuki, T., Mori, H., Kashiwabara, T., Fujisawa, T.: On minimal augmentation of a graph to obtain an interval graph. Journal of Computer and System Sciences 22(1), 60–97 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  14. Rapaport, I., Suchan, K., Todinca, I.: Minimal proper interval completions. Information Processing Letters 5, 195–202 (2008)

    MathSciNet  Google Scholar 

  15. Rose, D., Tarjan, R.E., Lueker, G.: Algorithmic aspects of vertex elimination on graphs. SIAM J. Comput. 5, 146–160 (1976)

    Article  MathSciNet  Google Scholar 

  16. Rose, D.J.: A graph-theoretic study of the numerical solution of sparse positive definite systems of linear equations. Graph Theory and Computing, 183–217 (1972)

    Google Scholar 

  17. Suchan, K., Todinca, I.: Minimal interval completion through graph exploration. Theoretical Computer Science 410(1), 35–43 (2009)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Crespelle, C., Todinca, I. (2010). An \({\mathcal{O}}(n^2)\)-time Algorithm for the Minimal Interval Completion Problem. In: Kratochvíl, J., Li, A., Fiala, J., Kolman, P. (eds) Theory and Applications of Models of Computation. TAMC 2010. Lecture Notes in Computer Science, vol 6108. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13562-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13562-0_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13561-3

  • Online ISBN: 978-3-642-13562-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics