Skip to main content

Support Feature Machine for DNA Microarray Data

  • Conference paper
Book cover Rough Sets and Current Trends in Computing (RSCTC 2010)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6086))

Included in the following conference series:

  • 1467 Accesses

Abstract

Support Feature Machines (SFM) define useful features derived from similarity to support vectors (kernel transformations), global projections (linear or perceptron-style) and localized projections. Explicit construction of extended feature spaces enables control over selection of features, complexity control and allows final analysis by any classification method. Additionally projections of high-dimensional data may be used to estimate and display confidence of predictions. This approach has been applied to the DNA microarray data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Witten, I., Frank, E.: Data Mining: Practical machine learning tools and techniques, 2nd edn. Morgan Kaufmann, San Francisco (2005)

    MATH  Google Scholar 

  2. Mierswa, I., Wurst, M., Klinkenberg, R., Scholz, M., Euler, T.: Yale: Rapid prototyping for complex data mining tasks. In: Proc. 12th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining, KDD 2006 (2006)

    Google Scholar 

  3. Berthold, M., Cebron, N., Dill, F., Gabriel, T., Kötter, T., Meinl, T., Ohl, P., Sieb, C., Thiel, K., Wiswedel, B.: KNIME: The Konstanz Information Miner. In: Studies in Classification, Data Analysis, and Knowledge Organization (GfKL 2007). Springer, Heidelberg (2007)

    Google Scholar 

  4. Quinlan, J., Cameron-Jones, R.: Oversearching and layered search in empirical learning. In: Proc. of the 14th International Joint Conference on Artificial Intelligence, pp. 1019–1024. Morgan Kaufmann, San Francisco (1995)

    Google Scholar 

  5. Duch, W., Grudziński, K.: Meta-learning via search combined with parameter optimization. In: Rutkowski, L., Kacprzyk, J. (eds.) Advances in Soft Computing, pp. 13–22. Physica Verlag, Springer, New York (2002)

    Google Scholar 

  6. Grąbczewski, K., Jankowski, N.: Meta-learning with machine generators and complexity controlled exploration. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2008. LNCS (LNAI), vol. 5097, pp. 545–555. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  7. Brazdil, P., Giraud-Carrier, C., Soares, C., Vilalta, R.: Metalearning: Applications to Data Mining. In: Cognitive Technologies. Springer, Heidelberg (2009)

    Google Scholar 

  8. Kuncheva, L.: Combining Pattern Classifiers. Methods and Algorithms. J. Wiley & Sons, New York (2004)

    Book  MATH  Google Scholar 

  9. Schölkopf, B., Smola, A.: Learning with Kernels. Support Vector Machines, Regularization, Optimization, and Beyond. MIT Press, Cambridge (2001)

    Google Scholar 

  10. Avnimelech, R., Intrator, N.: Boosted mixture of experts: An ensemble learning scheme. Neural Computation 11, 483–497 (1999)

    Article  Google Scholar 

  11. Duch, W., Itert, L.: Committees of undemocratic competent models. In: Rutkowski, L., Kacprzyk, J. (eds.) Proc. of Int. Conf. on Artificial Neural Networks (ICANN), Istanbul, pp. 33–36 (2003)

    Google Scholar 

  12. Duch, W., Itert, L.: Competent undemocratic committees. In: Rutkowski, L., Kacprzyk, J. (eds.) Neural Networks and Soft Computing, pp. 412–417. Physica Verlag/Springer, Heidelberg (2002)

    Google Scholar 

  13. Smyth, P., Wolpert, D.: Linearly combining density estimators via stacking. Machine Learning 36, 59–83 (1999)

    Article  Google Scholar 

  14. Brown, D.A.: N-bit parity networks. Neural Networks 6, 607–608 (1993)

    Article  Google Scholar 

  15. Grochowski, M., Duch, W.: Learning highly non-separable Boolean functions using Constructive Feedforward Neural Network. In: de Sá, J.M., Alexandre, L.A., Duch, W., Mandic, D.P. (eds.) ICANN 2007. LNCS, vol. 4668, pp. 180–189. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  16. Duch, W.: k-separability. In: Kollias, S.D., Stafylopatis, A., Duch, W., Oja, E. (eds.) ICANN 2006. LNCS, vol. 4131, pp. 188–197. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  17. Duch, W., Maszczyk, T.: Almost random projection machine. In: Alippi, C., Polycarpou, M., Panayiotou, C., Ellinas, G. (eds.) ICANN 2009. LNCS, vol. 5768, pp. 789–798. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  18. Grochowski, M., Duch, W.: Projection Pursuit Constructive Neural Networks Based on Quality of Projected Clusters. In: Kůrková, V., Neruda, R., Koutník, J. (eds.) ICANN 2008, Part II. LNCS, vol. 5164, pp. 754–762. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  19. Duch, W., Maszczyk, T.: Universal learning machines. In: Leung, C.S., Lee, M., Chan, J.H. (eds.) ICONIP 2009, Part II. LNCS, vol. 5864, pp. 206–215. Springer, Heidelberg (2009)

    Google Scholar 

  20. Cristianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines and other Kernel-Based Learning Methods. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  21. Cover, T.M.: Geometrical and statistical properties of systems of linear inequalities with applications in pattern recognition. IEEE Transactions on Electronic Computers 14, 326–334 (1965)

    Article  MATH  Google Scholar 

  22. Sonnenburg, S., Raetsch, G., Schaefer, C., Schoelkopf, B.: Large scale multiple kernel learning. Journal of Machine Learning Research 7, 1531–1565 (2006)

    Google Scholar 

  23. Tebbens, J., Schlesinger, P.: Improving implementation of linear discriminant analysis for the small sample size problem. Computational Statistics & Data Analysis 52, 423–437 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  24. Robnik-Sikonja, M., Kononenko, I.: Theoretical and empirical analysis of relieff and relieff. Machine Learning 53, 23–69 (2003)

    Article  MATH  Google Scholar 

  25. Maszczyk, T., Grochowski, M., Duch, W.: Discovering Data Structures using Meta-learning, Visualization and Constructive Neural Networks. In: Advances in Machine Learning II. Studies in Computational Intelligence, vol. 262, pp. 467–484. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  26. Gra̧bczewski, K., Duch, W.: The separability of split value criterion. In: Proceedings of the 5th Conf. on Neural Networks and Soft Computing, Zakopane, Poland, pp. 201–208. Polish Neural Network Society (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Maszczyk, T., Duch, W. (2010). Support Feature Machine for DNA Microarray Data. In: Szczuka, M., Kryszkiewicz, M., Ramanna, S., Jensen, R., Hu, Q. (eds) Rough Sets and Current Trends in Computing. RSCTC 2010. Lecture Notes in Computer Science(), vol 6086. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13529-3_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13529-3_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13528-6

  • Online ISBN: 978-3-642-13529-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics