Skip to main content

DNA Origami as Self-assembling Circuit Boards

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6079))

Abstract

DNA origami have the potential to serve as self-assembling circuit boards for nanoelectronic devices. This paper focuses on understanding just one aspect of the hierarchical self-assembly of DNA origami—the oligomerization of individual origami to form chains of aligned and oriented origami. The eventual goal is to place small numbers of nanomagnets in specific locations on the DNA origami in such a way that the self-assembly of the origami causes a magnetic cellular automaton device, such as a wire, to be formed. Four strategies for forming well ordered chains of DNA origami were compared by examination of AFM images of DNA origami chains deposited on mica. Preliminary results of patterned deposition of DNA origami on lithographic patterns are also reported.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kim, S.O., Solak, H.H., Stoykovich, M.P., Ferrier, N.J., de Pablo, J.J., Nealey, P.F.: Epitaxial self-assembly of block copolymers on lithographically defined nanopatterned substrates. Nature 424(6947), 411–414 (2003)

    Article  Google Scholar 

  2. Tougaw, P.D., Lent, C.S.: Logical Devices Implemented Using Quantum Cellular Automata. Journal of Applied Physics 75, 1818 (1994)

    Article  Google Scholar 

  3. Lent, C.S., Tougaw, P.D.: A Device Architecture for Computing with Quantum Dots. Proceedings of the IEEE 85, 541 (1997)

    Article  Google Scholar 

  4. Lieberman, M., Chellamma, S., Varughese, B., Wang, Y., Lent, C., Bernstein, G.H., Snider, G., Peiris, F.C.: Quantum-dot cellular automata at a molecular scale. Annals of the New York Academy of Science 960, 225–239 (2002)

    Google Scholar 

  5. Niemier, M.T.: The Effects of a New Technology on the Design, Organization and Architectures of Computing Systems. U. of Notre Dame, Ph.D. Dissertation

    Google Scholar 

  6. Niemier, M.T., Kogge, P.M.: Exploring and exploiting wire-level pipelining in emerging technologies. In: Proceedings of the 28th annual international symposium on Computer Architecture, Göteborg, Sweden, pp. 166–177. ACM Press, New York (2001)

    Chapter  Google Scholar 

  7. Cowburn, R., Welland, M.: Room temperature magnetic quantum cellular automata. Science 287, 1466 (2000)

    Article  Google Scholar 

  8. Orlov, A., Imre, A., Ji, L., Csaba, G., Porod, W., Bernstein, G.H.: Magnetic Quantum-dot Cellular Automata: Recent Developments and Prospects. J. Nanoelec. Optoelec. 3(1), 55–68 (2008)

    Article  Google Scholar 

  9. Chaudhary, A., Chen, D.Z., Whitton, K., Niemier, M., Ravichandran, R.: International Conference on Computer Aided Design Proceedings of the 2005 IEEE/ACM International Conference on Computer-Aided Design, San Jose, CA, pp. 565–571 (2005)

    Google Scholar 

  10. Niemier, M.T., Alam, M.T., Hu, X.S., Bernstein, G.H., Porod, W., Putney, M., DeAngelis, J.: Clocking Structures and Power Analysis for Nanomagnet-based Logic Devices. In: Proceedings of International Symposium on Low Power Electronics and Design, pp. 26–31 (2007)

    Google Scholar 

  11. Imre, A.: Experimental Study of Nanomagnets for Magnetic QCA Logic Applications. U. of Notre Dame, Ph.D. Dissertation

    Google Scholar 

  12. Imre, A., et al.: Majority logic gate for Magnetic Quantum-Dot Cellular Automata. Science 311(5758), 205–208 (2006)

    Article  Google Scholar 

  13. Winfree, E., Liu, F., Wenzler, L.A., Seeman, N.C.: Nature 394, 539–541 (1998); He, Y., Chen, Y., Liu, H., Ribbe, A.E., Mao, C.: J. Am. Chem. Soc. 127, 12202–12203 (2005)

    Google Scholar 

  14. Barish, R.D., Schulman, R., Rothemund, P.W.K., Winfree, E.: An information-bearing seed for nucleating algorithmic self-assembly. PNAS 106, 6054–6059 (2009)

    Article  Google Scholar 

  15. Han, S.-P., Maune, H., Barish, R., Bockrath, M., Goddard III, W., Rothemund, P., Winfree, E.: Self-Assembly of Carbon Nanotube Devices Directed by 2D DNA Nanostructures. Presented at Foundations of Nanoscience, Snowbird, Utah (April 2009)

    Google Scholar 

  16. Deng, Z.X., Mao, C.D.: DNA-templated fabrication of 1D parallel and 2D crossed metallic nanowire arrays. Nano Lett. 3, 1545–1548 (2003)

    Article  Google Scholar 

  17. He, Y., Ko, S.H., Tian, Y., Ribbe, A.E., Mao, C.D.: Complexity emerges from lattice overlapping: Implications for nanopatterning. Small 4, 1329–1331 (2008)

    Article  Google Scholar 

  18. Sharma, J., Chhabra, R., Cheng, A., Brownell, J., Liu, Y., Yan, H.: Control of Self-Assembly of DNA Tubules Through Integration of Gold Nanoparticles. Science 323, 112–116 (2009)

    Article  Google Scholar 

  19. Yan, H., LaBean, T.H., Feng, L., Reif, J.H.: Directed Nucleation Assembly of Barcode Patterned DNA Lattices. PNAS 100, 8103–8108 (2003)

    Article  Google Scholar 

  20. Rothemund, P.W.: Proceedings of the 2005 IEEE/ACM International Conference on Computer-Aided Design, San Jose, CA, November 6-10, pp. 471-478. IEEE Computer Society, Washington (2005)

    Google Scholar 

  21. Rothemund, P.W.K.: Nature 440, 297–302 (2006)

    Google Scholar 

  22. Horcas, I., Fernandez, R., Gomez-Rodriguez, J.M., Colchero, J., Gomez-Herrero, J., Baro, A.M.: Review of Scientific Instruments.  78, 013705 (2007)

    Google Scholar 

  23. Walter, H.: Ultrahigh resolution electron beam lithography for molecular electronics, Department of Electrical Engineering, University of Notre Dame, PhD thesis (2004)

    Google Scholar 

  24. Bernstein, G.H., Hill, D.A., Liu, W.P.: New high-contrast developers for PMMA resist. J. Appl. Phys. 71, 4066–4075 (1992)

    Article  Google Scholar 

  25. Ke, Y., Linsday, S., Chang, Y., Liu, Y., Yan, H.: Science 319, 180–183 (2009)

    Google Scholar 

  26. Sarveswaran, K., Hu, W., Huber, P.W., Bernstein, G.H., Lieberman, M.: Langmuir 22, 11279–11283 (2006)

    Google Scholar 

  27. Niemier, M., Crocker, M., Hu, S., Lieberman, M.: Proceedings of International Conference on CAD (ICCAD), pp. 907–914 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kim, K.N., Sarveswaran, K., Mark, L., Lieberman, M. (2010). DNA Origami as Self-assembling Circuit Boards. In: Calude, C.S., Hagiya, M., Morita, K., Rozenberg, G., Timmis, J. (eds) Unconventional Computation. UC 2010. Lecture Notes in Computer Science, vol 6079. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13523-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13523-1_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13522-4

  • Online ISBN: 978-3-642-13523-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics