Skip to main content

Universal Continuous Variable Quantum Computation in the Micromaser

  • Conference paper
Unconventional Computation (UC 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6079))

Included in the following conference series:

Abstract

We present universal continuous variable quantum computation (CVQC) in the micromaser. With a brief history as motivation we present the background theory and define universal CVQC. We then show how to generate a set of operations in the micromaser which can be used to achieve universal CVQC. It then follows that the micromaser is a potential architecture for CVQC but our proof is easily adaptable to other potential physical systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Morrison, J.E.: The Astrolabe, Softcover edn., Janus (November 2007)

    Google Scholar 

  2. Shannon, C.E.: Mathematical Theory of the Differential Analyzer. Journal of Mathematics and Physics 20, 337–354 (1941)

    MATH  MathSciNet  Google Scholar 

  3. Rubel, L.: The Extended Analog Computer. Advances in Applied Mathematics 14(1), 39–50 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  4. Moore, C.: Recursion theory on the reals and continuous-time computation. Theoretical Computer Science 162(1), 23–44 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  5. Feynman, R.P.: Simulating physics with computers. International Journal of Theoretical Physics 21(6-7), 467–488 (1982)

    Article  MathSciNet  Google Scholar 

  6. Deutsch, D.: Quantum Theory the Church-Turing Principle and the Universal Quantum Computer. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences (1934-1990) 400(1818), 97–117 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  7. Feynman, R.P.: Quantum mechanical computers. Foundations of Physics 16(6), 507–531 (1986)

    Article  MathSciNet  Google Scholar 

  8. Lloyd, S., Braunstein, S.L.: Quantum Computation over Continuous Variables. Physical Review Letters 82(8), 1784–1787 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  9. Pati, A.K., Braunstein, S.L., Lloyd, S.: Quantum searching with continuous variables. arXiv:quant-ph/0002082v2 (June 2000), http://arxiv.org/abs/quant-ph/0002082v2

  10. Pati, A.K., Braunstein, S.L.: Deutsch-Jozsa algorithm for continuous variables. arXiv:quant-ph/0207108v1 (July 2002), http://arxiv.org/abs/quant-ph/0207108v1

  11. Lomonaco, S.J., Kauffman, L.H.: A Continuous Variable Shor Algorithm. arXiv:quant-ph/0210141v2 (June 2004), http://arxiv.org/abs/quant-ph/0210141v2

  12. Ralph, T., Gilchrist, A., Milburn, G., Munro, W., Glancy, S.: Quantum computation with optical coherent states. Physical Review A 68(4), 042319 (2003)

    Article  Google Scholar 

  13. Spiller, T.P., Nemoto, K., Braunstein, S.L., Munro, W.J., van Loock, P., Milburn, G.J.: Quantum computation by communication. New Journal of Physics 8(2), 30 (2006)

    Article  Google Scholar 

  14. Bartlett, S., Sanders, B., Braunstein, S., Nemoto, K.: Efficient Classical Simulation of Continuous Variable Quantum Information Processes. Physical Review Letters 88(9), 097904 (2002)

    Article  Google Scholar 

  15. Kok, P., Braunstein, S.L.: Multi-dimensional Hermite polynomials in quantum optics. Journal of Physics A: Mathematical and General 34(31), 6185–6195 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  16. Gottesman, D., Kitaev, A., Preskill, J.: Encoding a qubit in an oscillator. Physical Review A 64(1), 012310 (2001)

    Article  Google Scholar 

  17. Meschede, D., Walther, H., Müller, G.: One-Atom Maser. Physical Review Letters 54(6), 551–554 (1985)

    Article  Google Scholar 

  18. Jaynes, E.T., Cummings, F.W.: Comparison of quantum and semiclassical radiation theories with application to the beam maser. Proceedings of the IEEE 51(1), 89–109 (1963)

    Article  Google Scholar 

  19. Walther, H., Varcoe, B.T.H., Englert, B.G., Becker, T.: Cavity quantum electrodynamics. Reports on Progress in Physics 69(5), 1325–1382 (2006)

    Article  Google Scholar 

  20. Barnett, S., Radmore, P.: Methods in Theoretical Quantum Optics, 1st edn., January 2003. Oxford Series on Optical and Imaging Sciences, vol. 15. Oxford University Press, USA (January 2003)

    Google Scholar 

  21. Englert, B.G.: Elements of Micromaser Physics. arXiv:quant-ph/0203052 (March 2002), http://arxiv.org/abs/quant-ph/0203052

  22. Brattke, S., Varcoe, B.T.H., Walther, H.: Generation of Photon Number States on Demand via Cavity Quantum Electrodynamics. Physical Review Letters 86(16), 3534–3537 (2001)

    Article  Google Scholar 

  23. Kuhr, S., Alt, W., Schrader, D., Muller, M., Gomer, V., Meschede, D.: Deterministic Delivery of a Single Atom. Science 293(5528), 278–280 (2001)

    Article  Google Scholar 

  24. Weidinger, M., Varcoe, B.T.H., Heerlein, R., Walther, H.: Trapping States in the Micromaser. Physical Review Letters 82(19), 3795–3798 (1999)

    Article  Google Scholar 

  25. Slosser, J.J., Meystre, P.: Tangent and cotangent states of the electromagnetic field. Physical Review A 41(7), 3867–3874 (1990)

    Article  Google Scholar 

  26. Agarwal, G.S., Lange, W., Walther, H.: Intense-field renormalization of cavity-induced spontaneous emission. Physical Review A 48(6), 4555–4568 (1993)

    Article  Google Scholar 

  27. Lange, W., Walther, H.: Observation of dynamic suppression of spontaneous emission in a strongly driven cavity. Physical Review A 48(6), 4551–4554 (1993)

    Article  Google Scholar 

  28. Engen, G.F.: Amplitude Stabilization of a Microwave Signal Source. IEEE Transactions on Microwave Theory and Techniques 6(2), 202–206 (1958)

    Article  Google Scholar 

  29. Orszag, M., Ramírez, R., Retamal, J.C., Roa, L.: Generation of highly squeezed states in a two-photon micromaser. Physical Review A 45(9), 6717–6720 (1992)

    Article  Google Scholar 

  30. Lam, P.K., Ralph, T.C., Buchler, B.C., McClelland, D.E., Bachor, H.A., Gao, J.: Optimization and transfer of vacuum squeezing from an optical parametric oscillator. Journal of Optics B: Quantum and Semiclassical Optics 1(4), 469–474 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wagner, R.C., Everitt, M.S., Kendon, V.M., Jones, M.L. (2010). Universal Continuous Variable Quantum Computation in the Micromaser. In: Calude, C.S., Hagiya, M., Morita, K., Rozenberg, G., Timmis, J. (eds) Unconventional Computation. UC 2010. Lecture Notes in Computer Science, vol 6079. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13523-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13523-1_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13522-4

  • Online ISBN: 978-3-642-13523-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics