Skip to main content

Improving the Held and Karp Approach with Constraint Programming

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6140))

Abstract

Held and Karp have proposed, in the early 1970s, a relaxation for the Traveling Salesman Problem (TSP) as well as a branch-and-bound procedure that can solve small to modest-size instances to optimality [4, 5]. It has been shown that the Held-Karp relaxation produces very tight bounds in practice, and this relaxation is therefore applied in TSP solvers such as Concorde [1]. In this short paper we show that the Held-Karp approach can benefit from well-known techniques in Constraint Programming (CP) such as domain filtering and constraint propagation. Namely, we show that filtering algorithms developed for the weighted spanning tree constraint [3, 8] can be adapted to the context of the Held and Karp procedure. In addition to the adaptation of existing algorithms, we introduce a special-purpose filtering algorithm based on the underlying mechanisms used in Prim’s algorithm [7]. Finally, we explored two different branching schemes to close the integrality gap. Our initial experimental results indicate that the addition of the CP techniques to the Held-Karp method can be very effective.

The paper is organized as follows: section 2 describes the Held-Karp approach while section 3 gives some insights on the Constraint Programming techniques and branching scheme used. In section 4 we demonstrate, through preliminary experiments, the impact of using CP in combination with Held and Karp based branch-and-bound on small to modest-size instances from the TSPlib.

This work was partially supported by the European Community’s 7th Framework Programme (FP7/2007-2013). It was started when L.-M. Rousseau and W.-J. van Hoeve were visiting the University of Nice-Sophia Antipolis (June/July 2009).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Applegate, D.L., Bixby, R.E., Chvátal, V., Cook, W.J.: The Traveling Salesman Problem: A Computational Study. Princeton University Press, Princeton (2006)

    MATH  Google Scholar 

  2. Balas, E., Toth, P.: Branch and Bound Methods. In: Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G., Shmoys, D.B. (eds.) The Traveling Salesman Problem: A Guided Tour of Combinatorial Optimization, ch. 10. Wiley, Chichester (1985)

    Google Scholar 

  3. Dooms, G., Katriel, I.: The “not-too-heavy spanning tree” constraint. In: Van Hentenryck, P., Wolsey, L.A. (eds.) CPAIOR 2007. LNCS, vol. 4510, pp. 59–70. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  4. Held, M., Karp, R.M.: The Traveling-Salesman Problem and Minimum Spanning Trees. Operations Research 18, 1138–1162 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  5. Held, M., Karp, R.M.: The Traveling-Salesman Problem and Minimum Spanning Trees: Part II. Mathematical Programming 1, 6–25 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  6. Helsgaun, K.: An Effective Implementation of the Lin-Kernighan Traveling Salesman Heuristic. European Journal of Operational Research 126(1), 106–130 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  7. Prim, R.C.: Shortest connection networks and some generalizations. Bell System Tech. J. 36, 1389–1401 (1957)

    Google Scholar 

  8. Régin, J.-C.: Simpler and Incremental Consistency Checking and Arc Consistency Filtering Algorithms for the Weighted Spanning Tree Constraint. In: Perron, L., Trick, M.A. (eds.) CPAIOR 2008. LNCS, vol. 5015, pp. 233–247. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Benchimol, P., Régin, JC., Rousseau, LM., Rueher, M., van Hoeve, WJ. (2010). Improving the Held and Karp Approach with Constraint Programming. In: Lodi, A., Milano, M., Toth, P. (eds) Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems. CPAIOR 2010. Lecture Notes in Computer Science, vol 6140. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13520-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13520-0_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13519-4

  • Online ISBN: 978-3-642-13520-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics