Skip to main content

Epigenetic Approaches to Adipose Biology

  • Chapter
  • First Online:
Novel Insights into Adipose Cell Functions

Part of the book series: Research and Perspectives in Endocrine Interactions ((RPEI))

  • 586 Accesses

Abstract

Adipocytes play a major role in many metabolic diseases. To understand how adipocyte function is regulated in health and disease, we have focused on identifying and characterizing the transcriptional pathways that regulate differentiation, insulin sensitivity, lipogenesis, and lipolysis. Traditional strategies to accomplish these goals rely upon the discovery of candidate factors that may come to researchers’ attention because of homology, expression, or an unexpected phenotype in a knockout animal, for example. In contrast, we have developed strategies to map epigenetic alterations in adipocytes, reasoning that this information can be used to identify novel pathways that would have been difficult to predict otherwise. In initial proof-of-principle studies, we employed a high-throughput DNase hypersensitivity analysis in developing adipocytes. These experiments led us to identify interferon regulatory factors (IRFs) and the nuclear receptor, Nr2f2, as key players in adipocyte differentiation. Despite the success of this approach, there were temporal, spatial, and functional biases that prevented a truly comprehensive analysis. We have therefore performed a genome-wide analysis using ChIP-Seq-based mapping of modified histones in two species (mouse and human) and at four distinct developmental time points, providing an unprecedented look at chromatin state changes over the course of cellular differentiation. These studies will allow us to draw inferences about the transcriptional control of adipocyte function and open the door for downstream studies that directly address metabolic disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akerblad P, Lind U, Liberg D, Bamberg K, Sigvardsson M (2002) Early B-cell factor (O/E-1) is a promoter of adipogenesis and involved in control of genes important for terminal adipocyte differentiation. Mol Cell Biol 22: 8015–8025

    Article  PubMed  CAS  Google Scholar 

  • Akopov SB, Chernov IP, Bulanenkova SS, Skvortsova YV, Vetchinova AS, Nikolaev LG (2007) Methods for identification of epigenetic elements in mammalian long multigenic genome sequences. Biochemistry (Mosc) 72: 589–594

    Article  CAS  Google Scholar 

  • Bernstein BE, Mikkelsen TS, Xie X, Kamal M, Huebert DJ, Cuff J, Fry B, Meissner A, Wernig M, Plath K, Jaenisch R, Wagschal A, Feil R, Schreiber SL, Lander ES (2006) A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125: 315–326

    Article  PubMed  CAS  Google Scholar 

  • Bernstein BE, Meissner A, Lander ES (2007) The mammalian epigenome. Cell 128: 669–681

    Article  PubMed  CAS  Google Scholar 

  • Eguchi J, Yan QW, Schones DE, Kamal M, Hsu CH, Zhang MQ, Crawford GE, Rosen ED (2008) Interferon regulatory factors are transcriptional regulators of adipogenesis. Cell Metab 7: 86–94

    Article  PubMed  CAS  Google Scholar 

  • Farmer SR (2006) Transcriptional control of adipocyte formation. Cell Metab 4: 263–273

    Article  PubMed  CAS  Google Scholar 

  • Farmer SR (2008) Molecular determinants of brown adipocyte formation and function. Genes Dev 22: 1269–1275

    Article  PubMed  CAS  Google Scholar 

  • Finkelstein EA, Trogdon JG, Cohen JW, Dietz W (2009) Annual medical spending attributable to obesity: payer-and service-specific estimates. Health Aff (Millwood) 28: w822–831

    Article  Google Scholar 

  • Flegal KM, Graubard B, Williamson DF, Gail MH (2007) Cause-specific excess deaths associated with underweight overweight and obesity. JAMA 298: 2028–2037

    Article  PubMed  CAS  Google Scholar 

  • Hon GC, Hawkins RD, Ren B (2009) Predictive chromatin signatures in the mammalian genome. Human Mol Genet 18: R195–201

    Article  CAS  Google Scholar 

  • Hulver MW, Berggren JR, Carper MJ, Miyazaki M, Ntambi JM, Hoffman EP, Thyfault JP, Stevens R, Dohm GL, Houmard JA, Muoio DM (2005) Elevated stearoyl-CoA desaturase-1 expression in skeletal muscle contributes to abnormal fatty acid partitioning in obese humans. Cell Metab 2: 251–261

    Article  PubMed  CAS  Google Scholar 

  • Jones RH, Ozanne SE (2009) Fetal programming of glucose-insulin metabolism. Mol Cell Endocrinol 297: 4–9

    Article  PubMed  CAS  Google Scholar 

  • Kilpatrick ES, Rigby AS, Atkin SL (2009) The Diabetes Control and Complications Trial: the gift that keeps giving. Nature Rev Endocrinol 5: 537–545

    Article  Google Scholar 

  • Lefterova MI, Zhang Y, Steger D, Schupp M, Schug J, Cristancho A, Feng D, Zhuo D, Stoeckert CJ Jr, Liu XS, Lazar MA (2008) PPARgamma and C/EBP factors orchestrate adipocyte biology via adjacent binding on a genome-wide scale. Genes Dev 22: 2941–2952

    Article  PubMed  CAS  Google Scholar 

  • Mathers JC, McKay JA (2009) Epigenetics - potential contribution to fetal programming. Adv Exp Med Biol 646: 119–123

    Article  PubMed  Google Scholar 

  • Melillo RM, Pierantoni GM, Scala S, Battista S, Fedele M, Stella A, De Biasio MC, Chiappetta G, Fidanza V, Condorelli G, Santoro M, Croce CM, Viglietto G, Fusco A (2001) Critical role of the HMGI(Y) proteins in adipocytic cell growth and differentiation. Mol Cell Biol 21: 2485–2495

    Article  PubMed  CAS  Google Scholar 

  • Nielsen R, Pedersen TA, Hagenbeek D, Moulos P, Siersbaek R, Megens E, Denissov S, Borgesen M, Francoijs KJ, Mandrup S, Stunnenberg HG (2008) Genome-wide profiling of PPARgamma:RXR and RNA polymerase II occupancy reveals temporal activation of distinct metabolic pathways and changes in RXR dimer composition during adipogenesis. Genes Dev 22: 2953–2967

    Article  PubMed  CAS  Google Scholar 

  • Oishi Y, Manabe I, Tobe K, Tsushima K, Shindo T, Fujiu K, Nishimura G, Maemura K, Yamauchi T, Kubota N, Suzuki R, Kitamura T, Akira S, Kadowaki T, Nagai R (2005) Kruppel-like transcription factor KLF5 is a key regulator of adipocyte differentiation. Cell Metab 1: 27–39

    Article  PubMed  CAS  Google Scholar 

  • Pereira FA, Tsai MJ, Tsai SY (2000) COUP-TF orphan nuclear receptors in development and differentiation. Cell Mol Life Sci 57: 1388–1398

    Article  PubMed  CAS  Google Scholar 

  • Rosen ED, MacDougald OA (2006) Adipocyte differentiation from the inside out. Nature Rev Mol Cell Biol 7: 885–896

    Article  CAS  Google Scholar 

  • Rosen ED, Spiegelman BM (2006) Adipocytes as regulators of energy balance and glucose homeostasis. Nature 444: 847–853

    Article  PubMed  CAS  Google Scholar 

  • Suh JM, Gao X, McKay J, McKay R, Salo Z, Graff JM (2006) Hedgehog signaling plays a conserved role in inhibiting fat formation. Cell Metab 3: 25–34

    Article  PubMed  CAS  Google Scholar 

  • Symonds ME, Sebert SP, Hyatt MA, Budge H (2009) Nutritional programming of the metabolic syndrome. Nature Rev Endocrinol 5: 604–610

    Article  CAS  Google Scholar 

  • Tamura T, Yanai H, Savitsky D, Taniguchi T (2008) The IRF family transcription factors in immunity and oncogenesis. Annu Rev Immunol 26:535–584

    Article  PubMed  CAS  Google Scholar 

  • Tong Q, Dalgin G, Xu H, Ting CN, Leiden JM, Hotamisligil GS (2000) Function of GATA transcription factors in preadipocyte-adipocyte transition. Science 290: 134–138

    Article  PubMed  CAS  Google Scholar 

  • Tontonoz P, Hu E, Graves RA, Budavari AI, Spiegelman BM (1994) mPPAR gamma 2: tissue-specific regulator of an adipocyte enhancer. Genes Dev 8: 1224–1234

    Article  PubMed  CAS  Google Scholar 

  • Wang Z, Schones DE, Zhao K (2009) Characterization of human epigenomes. Curr Opin Genet Dev 19: 127–134

    Article  PubMed  CAS  Google Scholar 

  • Xu Z,Yu S, Hsu CH, Eguchi J, Rosen ED (2008) The orphan nuclear receptor chicken ovalbumin upstream promoter-transcription factor II is a critical regulator of adipogenesis. Proc Natl Acad Sci USA 105: 2421–2426

    Article  PubMed  CAS  Google Scholar 

  • Yeh WC, Cao Z, Classon M, McKnight SL (1995) Cascade regulation of terminal adipocyte differentiation by three members of the C/EBP family of leucine zipper proteins. Genes Dev 9: 168–181

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evan D. Rosen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rosen, E.D. (2010). Epigenetic Approaches to Adipose Biology. In: Christen, Y., Clément, K., Spiegelman, B. (eds) Novel Insights into Adipose Cell Functions. Research and Perspectives in Endocrine Interactions. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13517-0_10

Download citation

Publish with us

Policies and ethics