Skip to main content

Algorithms for Forest Pattern Matching

  • Conference paper
Combinatorial Pattern Matching (CPM 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6129))

Included in the following conference series:

Abstract

Ordered labelled trees are trees where the left-to-right order among siblings is significant. An ordered labelled forest is a sequence of ordered labelled trees. Given an ordered labelled forest F (“the target forest”) and an ordered labelled forest G (“the pattern forest”), the forest pattern matching problem is to find a sub-forest F′ of F such that F′ and G are the most similar over all possible F′. In this paper, we present efficient algorithms for the forest pattern matching problem for two types of sub-forests: closed subforests and closed substructures. As RNA molecules’ secondary structures could be represented as ordered labelled forests, our algorithms can be used to locate the structural or functional regions in RNA secondary structures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Backofen, R., Will, S.: Local Sequence-structure Motifs in RNA. Journal of Bioinformatics and Computational Biology 2(4), 681–698 (2004)

    Article  Google Scholar 

  2. Demaine, E.D., Mozes, S., Rossman, B., Weimann, O.: An optimal decomposition algorithm for tree edit distance. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 146–157. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  3. Höchsmann, M., Töller, T., Giegerich, R., Kurtz, S.: Local similarity in RNA secondary structures. In: Proceedings of the IEEE Computational Systems Bioinformatics Conference, pp. 159–168 (2003)

    Google Scholar 

  4. Jansson, J., Hieu, N.T., Sung, W.-K.: Local gapped subforest alignment and its application in finding RNA structural motifs. In: Fleischer, R., Trippen, G. (eds.) ISAAC 2004. LNCS, vol. 3341, pp. 569–580. Springer, Heidelberg (2004)

    Google Scholar 

  5. Jansson, J., Peng, Z.: Algorithms for Finding a Most Similar Subforest. In: Lewenstein, M., Valiente, G. (eds.) CPM 2006. LNCS, vol. 4009, pp. 377–388. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  6. Jiang, T., Wang, L., Zhang, K.: Alignment of trees - an alternative to tree edit. Theoretical Computer Science 143, 137–148 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  7. Klein, P.N.: Computing the edit-distance between unrooted ordered trees. In: Bilardi, G., Pietracaprina, A., Italiano, G.F., Pucci, G. (eds.) ESA 1998. LNCS, vol. 1461, pp. 91–102. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  8. Motifs database, http://subviral.med.uottawa.ca/cgi-bin/motifs.cgi

  9. Sellers, P.H.: The theory and computation of evolutionary distances: pattern recognition. Journal of Algorithms 1(4), 359–373 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  10. Shapiro, B.A., Zhang, K.: Comparing multiple RNA secondary structures using tree comparisons. Computer Applications in the Biosciences 6(4), 309–318 (1990)

    Google Scholar 

  11. Tai, K.-C.: The tree-to-tree correction problem. Journal of the Association for Computing Machinery (JACM) 26(3), 422–433 (1979)

    MATH  MathSciNet  Google Scholar 

  12. Touzet, H.: A linear time edit distance algorithm for similar ordered trees. In: Apostolico, A., Crochemore, M., Park, K. (eds.) CPM 2005. LNCS, vol. 3537, pp. 334–345. Springer, Heidelberg (2005)

    Google Scholar 

  13. Ukkonen, E.: Algorithms for approximate string matching. Information and Control 64(1–3), 100–118 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  14. Zhang, K.: Computing similarity between RNA secondary structures. In: Proceedings of IEEE International Joint Symposia on Intelligence and Systems, Rockville, Maryland, May 1998, pp. 126–132 (1998)

    Google Scholar 

  15. Zhang, K., Shasha, D.: Simple fast algorithms for the editing distance between trees and related problems. SIAM Journal on Computing 18(6), 1245–1262 (1989)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhang, K., Zhu, Y. (2010). Algorithms for Forest Pattern Matching. In: Amir, A., Parida, L. (eds) Combinatorial Pattern Matching. CPM 2010. Lecture Notes in Computer Science, vol 6129. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13509-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13509-5_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13508-8

  • Online ISBN: 978-3-642-13509-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics