Advertisement

A New PSO Model Mimicking Bio-parasitic Behavior

  • Quande Qin
  • Rongjun Li
  • Ben Niu
  • Li Li
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6145)

Abstract

Based on the analysis of biological symbiotic relationship, the mechanism of facultative parasitic behaviour is embedded into the particle swarm optimization (PSO) to construct a two-population PSO model called PSOPB, composed of the host and the parasites population. In this model, the two populations exchange particles according to the fitness sorted in a certain number of iterations. In order to embody the law of "survival of the fittest" in biological evolution, the poor fitness particles in the host population are eliminated, replaced by the re-initialization of the particles in order to maintain constant population size. The results of experiments of a set of 6 benchmark functions show that presented algorithm model has faster convergence rate and higher search accuracy compared with CPSO, PSOPC and PSO-LIW.

Keywords

Swarm Intelligence Particle Swarm Optimization Parasitic behaviour PSOPB 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Eberchart, R.C., Kennedy, J.: Particle Swarm Optimization. In: IEEE International Conference on Neural Networks, Perth, Australia (1995)Google Scholar
  2. 2.
    Eberchart, R.C., Kennedy, J.: A New Optimizer Using Particle Swarm Theory. In: Proc. of the 6th International Symposium on Micromachine and Human Science, Nagoya, Japan, pp. 39–43 (1995)Google Scholar
  3. 3.
    Shi, Y., Eberchart, R.C.: A Modified Particle Swarm Optimizer. In: IEEE Congress on Evolutionary Computation, Anchorage, AK, NJ, pp. 69–73 (1998)Google Scholar
  4. 4.
    Park, J.B., Lee, K.S., Shin, J.R., Lee, K.Y.: A Particle Swarm Optimization for Economic Dispatch with Nonsmooth Cost Functions. IEEE Transaction on Power System 20, 34–42 (2005)CrossRefGoogle Scholar
  5. 5.
    Mendes, R., Cortez, P., Rocha, M., Neves, J.: Particle Swarms for Feedforward Neural Network Training. In: International Joint Conference on Neural Networks, pp. 1895–1899 (2002)Google Scholar
  6. 6.
    Parsopoulos, K.E., Papageorgiou, E.I., et al.: A first Study of Fuzzy Cognitive Maps Learning Using Particle Swarm Optimization. In: Proc. of IEEE Congress on Evolutionary Computation, Canberra, Australia, pp. 1440–1447 (2003)Google Scholar
  7. 7.
    Cura, T.: Particle Swarm Optimization Approach to Portfolio Optimization. Nonlinear Analysis: Real World Applications 10, 2396–2406 (2009)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Angeline, P.J.: Evolutionary Optimization versus Particle Swarm Optimization and Philosophy and Performance Difference. In: Proc. of 7th Annual Conference on Evolutionary Programming, San Diego, USA, pp. 601–610 (1998)Google Scholar
  9. 9.
    Clerc, M., Kennedy, J.: The particle swarm: explosion, stability, and convergence in multi dimensional complex space. IEEE transaction on Evolutionary Computation 6, 58–73 (2002)CrossRefGoogle Scholar
  10. 10.
    Suganthan, P.N.: Particle Swarm Optimizer with Neighborhood Operator. In: Proc. of the IEEE Congress of Evolutionary Computation, pp. 1958–1961 (1999)Google Scholar
  11. 11.
    Angeline, P.J.: Using Selection to Improve Particle Swarm Optimization. In: Proc. of IEEE World Congress on Computational Intelligence, Anchorage, Alaska, pp. 84–89 (1998)Google Scholar
  12. 12.
    Mendes, R., Kennedy, J., Neves, J.: The Fully Informed Particle Swarm: Simpler, be Better. IEEE transaction on Evolutionary Computation 8, 204–210 (2004)CrossRefGoogle Scholar
  13. 13.
    Krink, T., Løvbjerg, M.: The Life Cycle Model: Combining Particle Swarm Optimisation, Genetic Algorithms and Hillclimbers. In: Guervós, J.J.M., Adamidis, P.A., Beyer, H.-G., Fernández-Villacañas, J.-L., Schwefel, H.-P. (eds.) PPSN 2002. LNCS, vol. 2439, pp. 621–630. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  14. 14.
    Silva, A., Neves, A., Costa, E.: An Empirical Comparison of Particle Swarm and Predator Prey Optimisation. In: O’Neill, M., Sutcliffe, R.F.E., Ryan, C., Eaton, M., Griffith, N.J.L. (eds.) AICS 2002. LNCS (LNAI), vol. 2464, pp. 103–110. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  15. 15.
    He, S., Wu, Q.H., Wen, J.Y., et al.: A Particle Swarm Optimizer with Passive Congregation. BioSystems 78, 135–147 (2004)CrossRefGoogle Scholar
  16. 16.
    Niu, B., Zhu, Y.L., et al.: An Improved Particle Swarm Optimization Based on Bacterial Chemotaxis. In: Proc. of the 6th World Congress on Intelligent Control and Automation, Dalian, China, pp. 3193–3197 (2006)Google Scholar
  17. 17.
    Shi, Y., Eberhart, R.C.: Parameter Selection in Particle Swarm Optimization. In: Porto, V.W., Waagen, D. (eds.) EP 1998. LNCS, vol. 1447, pp. 591–600. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  18. 18.
    Ahmadjian, V., Paracer, S.: Symbiosis: An Introduction to Biological Associations. Oxford University Press, Oxford (2000)Google Scholar
  19. 19.
    Douglas, A.E.: Symbiotic Interactions. Oxford University Press, Oxford (1994)Google Scholar
  20. 20.
    Li, W.X., Wang, G.T.: Regulation of Parasites on Host Populations: A Brief. Acta Hydrobiologica Sinica 26(5), 550–554 (2002)Google Scholar
  21. 21.
    Kennedy, J., Eberchart, R.C.: Empirical Study of Particle Swarm Optimization. In: Proc. of Congress on Evolutionary Computation, Washington, DC, pp. 1945–1949 (1999)Google Scholar
  22. 22.
    Eberhart, R.C., Shi, Y.: Comparing Inertia Weights and Constriction Factors in Particle Swarm Optimization. In: Proc. of IEEE International Congress on Evolutionary Computation, San Diego, CA, pp. 84–88 (2000)Google Scholar
  23. 23.
    Carlisle, A., Dozier, G.: An Off-The-Shelf PSO. In: Proc. of the workshop on Particle Swarm Optimization, Indianapolis, USA (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Quande Qin
    • 1
  • Rongjun Li
    • 1
  • Ben Niu
    • 2
  • Li Li
    • 2
  1. 1.School of Business AdministrationSouth China University of TechnologyGuangzhouChina
  2. 2.College of ManagementShenzhen UniversityShenzhenChina

Personalised recommendations