Advertisement

GPU-Based Parallelization Algorithm for 2D Line Integral Convolution

  • Bo Qin
  • Zhanbin Wu
  • Fang Su
  • Titi Pang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6145)

Abstract

GPU (Graphics Processing Unit) technology provides an efficient method for parallel computation. This paper will present a GPU-based Line Integral Convolution (LIC) parallel algorithm for visualization of discrete vector fields to accelerate LIC algorithm. The algorithm is implemented with parallel operations using Compute Unified Device Architecture (CUDA) programming model in GPU. The method can provide up to about 50× speed-up without any sacrifice on solution quality, compared to conventional sequential computation. Experiment results show that it is useful for in-time remote visualization of discrete vector fields.

Keywords

GPU parallel computation LIC CUDA 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cabral, B., Leedom, C.: Imaging Vector Fields Using Line Integral Convolution. In: SIGGRAPH 1993 Conference Proceedings, ACM SIGGRAPH, pp. 263–270 (1993)Google Scholar
  2. 2.
    Stalling, D., Hege, H.C.: Fast and resolution-independent line integral convolution. In: Proceedings of SIGGRAPH 1995, pp. 249–256 (1995)Google Scholar
  3. 3.
    Forssell, L.: Visualizing flow over curvilinear grid surfaces using line integral convolution. In: Proceeding of IEEE Visualization 1994, pp. 240–247 (1994)Google Scholar
  4. 4.
    Interrante, V., Grosch, C.: Strategies for effectively visualizing 3D flow with volume LIC. In: Proceedings of IEEE Visualization, Phoenix, Arizona, pp. 421–424 (1997)Google Scholar
  5. 5.
    Shen, H.K., Kao, D.L.: Uflic: a line integral convolution algorithm for visualizing unsteady flows. In: Proceeding of IEEE Visualization, Phoenix, Arizona, pp. 317–322 (1997)Google Scholar
  6. 6.
    Owens, J., Luebke, D., Govindaraju, N., Harris, M., Krüger, J., Lefohn, A., Purcell, T.: A Survey of General-Purpose Computation on Graphics Hardware. In: Proceedings of Eurographics (2005)Google Scholar
  7. 7.
    Liu, Y., Hu, J.: GPU-Based Parallelization for Fast Circuit Optimization. ACM, New York (2009)Google Scholar
  8. 8.
    Mathews, J.H.: Computer Derivations of Numerical Differentiation Formulae. Mathematics Education in Science and Technology 34(2), 280–287 (2003)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Hege, H.C., Stalling, D.: Fast LIC with piecewise polynomial filter kernels. In: Mathematical Visualization—Algorithms and Application via, pp. 259–314. Springer, Heidelberg (1998)Google Scholar
  10. 10.
    Vineet, V., Harish, P., Patidar, S., Narayanan, P.J.: Fast Minimum Spanning Tree for Large Graphs on the GPU. The Association for Computing Machinery, August 1-3 (2009)Google Scholar
  11. 11.
    Tsutsui, S., Fujimoto, N.: Solving Quadratic Assignment Problems by Genetic Algorithms with GPU Computation: A Case Study, July 8-12 (2009)Google Scholar
  12. 12.
    Tzeng, S., Wei, L.-Y.: Parallel White Noise Generation on a GPU via Cryptographic Hash, February 15-17. ACM, New York (2008)Google Scholar
  13. 13.
    Buck, I.: GPU Computing: Programming a Massively Parallel Processor. IEEE, Los Alamitos (2007)Google Scholar
  14. 14.
    NVIDIA: Solves the GPU Computing Puzzle (September 2009)Google Scholar
  15. 15.
    Robilliard, D., Marion, V., Fonlupt, C.: High Performance Genetic Programming on GPU. ACM, New York (June 19, 2009)Google Scholar
  16. 16.
    Garland, M.: Sparse Matrix Computations on Many core GPU’s, June 8-13. ACM, New York (2008)Google Scholar
  17. 17.
    NVIDIA Corporation. NVIDIA CUDA Programming Guide, Version 2.0 (November 2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Bo Qin
    • 1
  • Zhanbin Wu
    • 1
  • Fang Su
    • 1
  • Titi Pang
    • 1
  1. 1.Department of Computer Science & TechnologyOcean University of ChinaQingdaoChina

Personalised recommendations