Advertisement

A Quantum Immune Algorithm for Multiobjective Parallel Machine Scheduling

  • Zhiming Fang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6145)

Abstract

The study presents a novel quantum immune algorithm (QIA) for solving the parallel machine scheduling in the textile manufacturing industry. In this proposed algorithm, there are distinct characteristics as follows. First, the encoding method is based on Q-bit representation. Second, a novel mutation operator with a chaos-based rotation gate is proposed. Most importantly, two diversity schemes, suppression algorithm and similarity-based truncation algorithm, are employed to preserve the diversity of the population, and a new selection scheme is proposed to create the new population. Simulation results show that QIA is better than two quantum-inspired evolutionary algorithms.

Keywords

immune algorithm multiobjective optimization quantum computing knapsack problem 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gao, J.Q., He, G.X., Wang, Y.S.: Multi-objective scheduling problems subjected to special process constraint. In: Proc. IEEE Congr. Evolutionary Computation, Hongkong, China, pp. 105–110. IEEE Press, Los Alamitos (2008)Google Scholar
  2. 2.
    Gao, J.Q., He, G.X., Wang, Y.S.: A new parallel genetic algorithm for solving multiobjective scheduling problems subjected to special process constraint. Int. J. Adv. Manu. Tech. 43(1-2), 151–160 (2009)CrossRefGoogle Scholar
  3. 3.
    Li, B.B., Wang, L.: A hybrid quantum-inspired genetic algorithm for multiobjective flow shop scheduling. IEEE Trans. Evol. Comput. 37(3), 576–591 (2007)Google Scholar
  4. 4.
    Han, K.H., Kim, J.H.: Quantum-inspired evolutionary algorithms with a new termination criterion, hε gate, and two-phase scheme. IEEE Trans. Evol. Compt. 8(2), 156–169 (2004)CrossRefGoogle Scholar
  5. 5.
    Kim, Y., Kim, J.H., Han, K.H.: Quantum-inspired multiobjective evolutionary algorithm for multiobjective 0/1 knapsack problems. In: Proc. 2006 IEEE Congress on Evolutionary Computation, Vancouver, Canada, pp. 2601–2606. IEEE Press, Los Alamitos (2006)Google Scholar
  6. 6.
    Li, P.C., Li, S.Y.: Learning algorithm and application of quantum BP neural networks based on universial quantum gates. J. Sys. Eng. Electron. 19(1), 167–174 (2008)Google Scholar
  7. 7.
    Li, P.C., Li, S.Y.: Quantum ant colony algorithm for continuous space optimization. Chinese J. Contr. Theory Appl. 25(2), 237–241 (2008)Google Scholar
  8. 8.
    Gao, J.Q., Wang, J.: WBMOAIS: A novel artificial immune system for multiobjective optimization. Comput. Oper. Res. 37(1), 50–61 (2010)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Gao, J.Q., Fang, L., Wang, J.: WBMOAIS: A weight-based multiobjective immune algorithm: WBMOIA. Eng. Optimiz., doi:10.1080/03052150903406563 (to appear)Google Scholar
  10. 10.
    Gao, J.Q.: WBMOIGA: Weight-based multiobjective immune genetic algorithm and its application. In: Proc. IEEE International Conference on Information and Automation (ICIA 2009), Hai Zhu, China, pp. 1–6. IEEE Press, Los Alamitos (2009)CrossRefGoogle Scholar
  11. 11.
    Deb, K.: Multi-objective Optimization Using Evolutionary Algorithms. John Wiley & Sons, Ltd., New York (2001)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Zhiming Fang
    • 1
  1. 1.Zhijiang CollegeZhejiang University of TechnologyHangzhouChina

Personalised recommendations