Images Boundary Extraction Based on Curve Evolution and Ant Colony Algorithm

  • JinJiang Li
  • Da Yuan
  • Zhen Hua
  • Hui Fan
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6145)


A new boundary contour extraction algorithm based on curve evolution model and ant colony algorithm is proposed in this paper. Firstly, ant colony algorithm is used to find the optima of snake points for rapidly converging near image edge. Then the interpolation algorithm is applied to gaining the object’s rough contour that is used as the initial zero level set. The accurate contour can be obtained by the curve evolution method. Experimental results are given to demonstrate the feasibility of the proposed method in extracting contour from the blurred edge and high-noise images.


Boundary extraction Ant colony algorithm Curve evolution Mean-shift 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kass, M., Witkin, A., Terzopoulos, D.: Snakes: active contour models. International Journal of Computer Vision 1(4), 321–331 (1987)CrossRefGoogle Scholar
  2. 2.
    Caselles, V., Catte, F., Coll, T., Dibos, F.: A geometric model for active contours in image processing. Num. Mathematik. 66, 1–31 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Caselles, V., Kimmel, R., Sapiro, G.: Geodesic Active Contours. International of Journal of Computer Vision 22(1), 61–79 (1997)zbMATHCrossRefGoogle Scholar
  4. 4.
    Osher, S., Sethian, J.: A.Fronts propagation with curvature dependent Speed:Algorithm based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1), 12–49 (1998)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Mumford, D., Shah, J.: Optimal approximation by piecewise smooth functions and associated variational problems. Communications on Pure and Applied Mathematics 42(5), 577–685 (1989)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Chan, T. F., Vese, L.A.: Active contours without edges. IEEE Transactions on Image Processing 10(2), 266–277 (2001)zbMATHCrossRefGoogle Scholar
  7. 7.
    Li, J., Yang, X., Shi, P.-F.: A Fast Level Set Approach to Image Segmentation Based on Mumford-Shah Model. Chinese Journal of Computers 25(11), 1175–1183 (2002)MathSciNetGoogle Scholar
  8. 8.
    Gao, S., Bui, T.D.: Image segmentation and selective smoothing by using Mumford-Shah model. IEEE Transactions on Image Processing 14(10), 1537–1549 (2005)CrossRefGoogle Scholar
  9. 9.
    Han, J., Berkels, B., Droske, M., et al.: Mumford–Shah Model for One-to-One Edge Matching. IEEE Transactions on Image Processing 11(16), 2720–2732 (2007)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Du, X., Bui, T.D.: A New Model for Image Segmentation. IEEE Signal Processing Letters 15, 182–185 (2008)CrossRefGoogle Scholar
  11. 11.
    Wein Christopher, J., Blake Jan, F.: On the performance of Fractal Compression with Clustering. IEEE Trans. Image Process. 5(3), 522–526 (1996)CrossRefGoogle Scholar
  12. 12.
    Dorigo, M., Gambardella, L.M.: Ant colony system: a cooperative learning approach to the traveling saleman problem. IEEE Trans. on Evolutionary Computation 1(1), 53–56 (1997)CrossRefGoogle Scholar
  13. 13.
    Cheng, Y.: Mean Shift, Mode Seeking, and Clustering. IEEE Transactions on Pattern Analysis and Machine Intelligence 17(8), 790–799 (1995)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • JinJiang Li
    • 1
    • 2
  • Da Yuan
    • 1
  • Zhen Hua
    • 1
  • Hui Fan
    • 1
  1. 1.School of Computer Science and TechnologyShandong Institute of Business and TechnologyYantaiChina
  2. 2.School of Computer Science and TechnologyShandong UniversityJinanChina

Personalised recommendations