Advertisement

Finding the Maximum Module of the Roots of a Polynomial by Particle Swarm Optimization

  • Liangdong Qu
  • Dengxu He
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6145)

Abstract

After the theorem which is used to determine whether all roots of a polynomial are in unit circle is given, and two particle swarm optimizations for finding the maximum module of the roots of a polynomial based on the theorem are proposed. Finally, several computer simulation results show that using these algorithms to find the maximum module of roots of a polynomial are more efficient and feasible, the convergent speed is much faster and the accuracy of results is much higher.

Keywords

polynomial the maximum module unit circle particle swarm optimization parallel 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Horn, P.A., Johnson, C.H.: Matrix Analysis. Cambridge University Press, Cambridge (1990)zbMATHGoogle Scholar
  2. 2.
    Farmer, M.R., Loizou, G.: Locating Multiple Zeros Interactively. Comput. Math. Appl. 11(6), 595–603 (1985)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Kittaneh, F.: Singular Values of Companion Matrices and Bounds on Zeros of Polynomials. Society for Industrial and Applied Mathematics (1995)Google Scholar
  4. 4.
    Guan, Y.: An iterative arithmetic for the largest module of roots of a polynomial. Journal of Hangzhou Teachers College (Natural Science Edition) 4(1), 22–24 (2005) (in Chinese)zbMATHGoogle Scholar
  5. 5.
    Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: Proceedings of IEEE International Conference on Neural Networks, pp. 1942–1948 (1995)Google Scholar
  6. 6.
    Shen, H.Y., Peng, X.Q., Wang, J.N., Hu, Z.K.: A mountain clustering based on improved PSO algorithm. In: Wang, L., Chen, K., S. Ong, Y. (eds.) ICNC 2005. LNCS, vol. 3612, pp. 477–481. Springer, Heidelberg (2005)Google Scholar
  7. 7.
    Eberhart, R.C., Shi, Y.: Extracting rules from fuzzy neural network by particle swarm optimization. In: Proceedings of IEEE International Conference on Evolutionary Computation, Anchorage, Alaska, USA (1998)Google Scholar
  8. 8.
    Ralston, A., Will, H.S.: Mathematical Methods for Digital Computer. John Wiley & Sons Inc., Chichester (1960)Google Scholar
  9. 9.
    Cheng, J.S.: A Parallel Algorithm for Finding Roots of Complex Polynomial. J. of Comput. Sci. & Technol. 5(1), 71–81 (1990)zbMATHCrossRefGoogle Scholar
  10. 10.
    Shi, Y., Eberhart, R.C.: A modified particle swarm optimizer. In: Proceedings of the IEEE International Conference on Evolutionary Computation, Anchorage, Alaska, USA, pp. 69–73 (1998)Google Scholar
  11. 11.
    Song, Y.Z.: The existence the region of polynomial zeros. ACTA Mathematic Sinica 36(2), 254–258 (1993) (in Chinese)zbMATHGoogle Scholar
  12. 12.
    Zhao, W.J.: Bounds for the zeros of polynomials. Journal of Qingdao University 13(2), 14–19 (2000) (in Chinese)MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Liangdong Qu
    • 1
  • Dengxu He
    • 1
  1. 1.College of Mathematics and Computer ScienceGuangxi University for NationalitiesNanningChina

Personalised recommendations