Particle Swarm Optimization for Automatic Selection of Relevance Feedback Heuristics

  • Peng-Yeng Yin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6145)


Relevance feedback (RF) is an iterative process which refines the retrievals by utilizing user’s feedback marked on retrieved results. Recent research has focused on the optimization for RF heuristic selection. In this paper, we propose an automatic RF heuristic selection framework which automatically chooses the best RF heuristic for the given query. The proposed method performs two learning tasks: query optimization and heuristic-selection optimization. The particle swarm optimization (PSO) paradigm is applied to assist the learning tasks. Experimental results tested on a content-based retrieval system with a real-world image database reveal that the proposed method outperforms several existing RF approaches using different techniques. The convergence behavior of the proposed method is empirically analyzed.


information retrieval relevance feedback long-term learning heuristic selection particle swarm optimization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Singhal, A.: Modern Information Retrieval: A Brief Overview. Bulletin of the IEEE Computer Society Technical Committee on Data Engineering 24(4), 35–43 (2001)Google Scholar
  2. 2.
    Salton, G.: The SMART System. Prentice Hall, Englewood Cliffs (1971)Google Scholar
  3. 3.
    Rocchio, J.J.: Relevance feedback in information retrieval. In: Salton, G. (ed.) The SMART System, pp. 313–323. Prentice-Hall, New Jersey (1971)Google Scholar
  4. 4.
    Ciocca, G., Schettini, R.: A relevance feedback mechanism for content-based image retrieval. Information Processing and Management 35(6), 605–632 (1999)CrossRefGoogle Scholar
  5. 5.
    Rui, Y., et al.: Relevance feedback: a power tool for interactive content-based image retrieval. IEEE Trans. Circuits and Systems for Video Technology 8(5), 644–655 (1998)CrossRefGoogle Scholar
  6. 6.
    Peng, J., Bhanu, B., Qing, S.: Probabilistic feature relevance learning for content-based image retrieval. Computer Vision and Image Understanding 75(1-2), 150–164 (1999)CrossRefGoogle Scholar
  7. 7.
    Cox, I., et al.: The Bayesian image retrieval system, PicHunter: theory, implementation, and psychophysical experiments. IEEE Trans. Image Processing 9(1), 20–37 (2000)CrossRefGoogle Scholar
  8. 8.
    Tong, S., Chang, E.Y.: Support vector machine active learning for image retrieval. In: Proceeding of the ACM International Conference on Multimedia, pp. 107–118 (2001)Google Scholar
  9. 9.
    Tieu, K., Viola, P.: Boosting image retrieval. In: Proceeding of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 228–235 (2000)Google Scholar
  10. 10.
    Minka, T.P., Picard, R.W.: Interactive learning with a society of models. Pattern Recognition 30, 565–581 (1997)CrossRefGoogle Scholar
  11. 11.
    Yin, P.Y., Bhanu, B., Chang, K.C., Dong, A.: Integrating relevance feedback techniques for image retrieval using reinforcement learning. IEEE Trans. Pattern Analysis & Machine Intelligence 27, 1536–1551 (2005)CrossRefGoogle Scholar
  12. 12.
    Cowling, P., Soubeiga, E.: Neighbor structures for personnel scheduling: a summit meeting scheduling problem. In: Burke, E., Erben, W. (eds.) PATAT 2000. LNCS, vol. 2079. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  13. 13.
    Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: Proceedings IEEE Int’l. Conf. on Neural Networks, vol. IV, pp. 1942–1948 (1995)Google Scholar
  14. 14.
    Clerc, M., Kennedy, J.: The particle swarm explosion, stability, and convergence in a multidimensional complex space. IEEE Transaction on Evolutionary Computation 6, 58–73 (2002)CrossRefGoogle Scholar
  15. 15.
    Hoi, C.H., Lyu, M.R.: A novel log-based relevance feedback technique in content-based image retrieval. In: Proceedings of the ACM International Conference on Multimedia, pp. 24–31 (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Peng-Yeng Yin
    • 1
  1. 1.Department of Information ManagementNational Chi-Nan UniversityNantouTaiwan

Personalised recommendations