Advertisement

Medical Image Registration Algorithm with Generalized Mutual Information and PSO-Powell Hybrid Algorithm

  • Jingzhou Zhang
  • Pengfei Huo
  • Jionghua Teng
  • Xue Wang
  • Suhuan Wang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6145)

Abstract

The medical image registration algorithm uses the mutual information measure function that has many local extremes. Therefore, we propose our medical image registration algorithm that combines generalized mutual information with PSO-Powell hybrid algorithm and uses the objective measure function based on Renyi entropy. The Renyi entropy can remove the local extremes. We use the particle swarm optimization (PSO) algorithm to locate the measure function near the local extremes. Then we take the local extremes as initial point and use the Powell optimization algorithm to search for the global optimal solution. Section 2.2 of the paper presents the six-step procedure of our registration algorithm. We simulate medical image data with the registration algorithm; the simulation results, given in Table. 2 and 3, show preliminarily that the registration algorithm can eliminate the local extremes of objective measure function and accelerate the convergence rate, thus obtaining accurate and better registration results.

Keywords

Medical image registration Generalized mutual information Measure function Optimization algorithm 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zitova, B., Flusser, J.: Image registration methods: A survey. J. Image and Vision Computing 21, 977–1000 (2003)CrossRefGoogle Scholar
  2. 2.
    Ardizzone, E., Gambino, O., La Cascia, M., Lo Presti, L., Pirrone, R.: Multimodal non-rigid registration of medical images based on mutual information maximization. In: 14th IEEE International Conference on Image Analysis and Processing (2007)Google Scholar
  3. 3.
    Liu, Y., Fedorov, A., Kikinis, R., Chrisochoides, N.: Real-time Non-rigid Registration of Medical Images on a Cooperative Parallel Architecture. In: IEEE International Conference on Bioinformatics and Biomedicine (2009)Google Scholar
  4. 4.
    Andronache, A., von Siebenthal, M., Szekely, G., Cattin, P.: Non-rigid registration of multimodal images using both mutual information and cross-correlation. J. Medical Image Analysis 12(1), 3–15 (2008)CrossRefGoogle Scholar
  5. 5.
    Yang, F., Zhang, H.: Multiresolution 3D Image Registration Using Hybrid Ant Colony Algorithm and Powell’s Method. J. Journal of Electronics & Information Technology 3 29(3), 622–625 (2007)Google Scholar
  6. 6.
    Feng, L., Yan, L., Huang, D., He, M., Teng, H.: A Study of PSO and Powell Hybrid Algorithm Applied in Medical Image Registration. J. Beijing Biomedical Engineering 4 4(1), 8–12 (2005)Google Scholar
  7. 7.
    Zhang, H., Zhang, J., Sun, J.: Medical Image Registration Method Based on Mixed Mutual Information. J. Computer Applications 10 26(10), 2351–2353 (2006)Google Scholar
  8. 8.
    Chen, Y., Lin, C., Mimori, A.: Multimodal Medical Image Registration Using Particle Swarm Optimization. In: Eighth International Conference on Intelligent Systems Design and Applications, pp. 127–131 (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Jingzhou Zhang
    • 1
  • Pengfei Huo
    • 1
  • Jionghua Teng
    • 1
  • Xue Wang
    • 1
  • Suhuan Wang
    • 1
  1. 1.College of AutomationNorthwestern Polytechnical UniversityXi’anChina

Personalised recommendations