Gender-Hierarchy Particle Swarm Optimizer Based on Punishment

  • Jiaquan Gao
  • Hao Li
  • Luoke Hu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6145)


The paper presents a novel particle swarm optimizer (PSO), called gender-hierarchy particle swarm optimizer based on punishment (GH-PSO). In the proposed algorithm, the social part and recognition part of PSO both are modified in order to accelerate the convergence and improve the accuracy of the optimal solution. Especially, a novel recognition approach, called general recognition, is presented to furthermore improve the performance of PSO. Experimental results show that the proposed algorithm shows better behaviors as compared to the standard PSO, tribes-based PSO and GH-PSO with tribes.


gender hierarchy recognition particle swarm optimizer 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kennedy, J., Eberhart, R.C.: A new optimizer using particle swarm theory. In: Proc. 6th International Symposium on Micro Machine and Human Science, Nagoya, Japan, pp. 39–43 (1995)Google Scholar
  2. 2.
    Shi, Y.H., Eberhart, R.C.: Empirical study of particle swarm optimization. In: Proc. 1999 Congress on Evolutionary Computation, pp. 1945–1950. IEEE Press, Piscataway (1999)Google Scholar
  3. 3.
    Clerc, M., Kennedy, J.: The particle swarmexplosion, stability, and convergence in a multidimensional complex space. IEEE Trans. Evol. Comput. 6, 58–73 (2002)CrossRefGoogle Scholar
  4. 4.
    Chen, K., Li, T.H., Cao, T.C.: Tribe-PSO: A novel global optimization algorithm and its application in molecular docking. Chemometrics Intell. Lab. Syst. 82, 248–259 (2006)CrossRefGoogle Scholar
  5. 5.
    Cooren, Y., Clerc, M., Siarry, P.: Performance evaluation of TRIBES, an adaptive particle swarm optimization algorithm. Swarm Intelligence 3, 1935–3820 (2009)CrossRefGoogle Scholar
  6. 6.
    Shi, Y.H., Eberhart, R.C.: A modified particle swarm optimizer. In: Proc.1998 IEEE International Conference on Computational Intelligence, Anchorage, Alaska, pp. 69–73. IEEE Press, Los Alamitos (1998)Google Scholar
  7. 7.
    Trelea, I.C.: The particle swarm optimization algrorithm:convergence analysis and parameter selection. Inform. Proc. Lett. 85, 317–325 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Fan, H.Y.: A modification to particle swarm optimization algorithm. Eng. Comput. 19, 970–989 (2002)zbMATHCrossRefGoogle Scholar
  9. 9.
    Schutte, J.F., Groenwold, A.A.: A study of global optimization using particle swarms. Struct. Multidis. Optim. 25, 261–269 (2003)CrossRefGoogle Scholar
  10. 10.
    Braendler, D., Hendtlass, T.: Improving particle swarm optimization using the collective movement of the swarm. IEEE Trans. Evol. Comput. (to appear)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Jiaquan Gao
    • 1
  • Hao Li
    • 1
  • Luoke Hu
    • 2
  1. 1.Zhijiang CollegeZhejiang University of TechnologyHangzhouChina
  2. 2.College of Mechanical EngineeringZhejiang University of TechnologyHangzhouChina

Personalised recommendations