Advertisement

Scalable and Parallel Reasoning in the Semantic Web

  • Jacopo Urbani
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6089)

Abstract

The current state of the art regarding scalable reasoning consists of programs that run on a single machine. When the amount of data is too large, or the logic is too complex, the computational resources of a single machine are not enough. We propose a distributed approach that overcomes these limitations and we sketch a research methodology. A distributed approach is challenging because of the skew in data distribution and the difficulty in partitioning Semantic Web data. We present initial results which are promising and suggest that the approach may be successful.

References

  1. 1.
    Dean, J., Ghemawat, S.: Mapreduce: Simplified data processing on large clusters. In: Proceedings of the USENIX Symposium on Operating Systems Design & Implementation (OSDI), pp. 137–147 (2004)Google Scholar
  2. 2.
    Drost, N., et al.: Resource tracking in parallel and distributed applications. In: Proc. of 17th IEEE International Symposium on High-Performance Distributed Computing, HPDC (2008)Google Scholar
  3. 3.
    Hogan, A., Harth, A., Polleres, A.: Scalable authoritative OWL reasoning for the web. International Journal on Semantic Web and Information Systems 5(2) (2009)Google Scholar
  4. 4.
    Mika, P., Tummarello, G.: Web semantics in the clouds. IEEE Intelligent Systems 23(5), 82–87 (2008)CrossRefGoogle Scholar
  5. 5.
    Oren, E., et al.: Marvin: A platform for large-scale analysis of Semantic Web data. In: Proceedings of the International Web Science Conference (2009)Google Scholar
  6. 6.
    Schlicht, A., Stuckenschmidt, H.: Distributed Resolution for Expressive Ontology Networks. In: Proceedings of the Web Reasoning and Rule Systems 2009, p. 87. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  7. 7.
    Soma, R., Prasanna, V.: Parallel inferencing for OWL knowledge bases. In: International Conference on Parallel Processing, pp. 75–82 (2008)Google Scholar
  8. 8.
    Urbani, J., Kotoulas, S., Oren, E., van Harmelen, F.: Scalable distributed reasoning using mapreduce. In: Bernstein, A., Karger, D.R., Heath, T., Feigenbaum, L., Maynard, D., Motta, E., Thirunarayan, K. (eds.) ISWC 2009. LNCS, vol. 5823, pp. 634–649. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  9. 9.
    van Nieuwpoort, R.V., Kielmann, T., Bal, H.E.: User-friendly and reliable grid computing based on imperfect middleware. In: Proceedings of the ACM/IEEE Conference on Supercomputing (2007)Google Scholar
  10. 10.
    van Nieuwpoort, R.V., et al.: Ibis: a flexible and efficient Java based grid programming environment. Concurrency and Computation: Practice and Experience 17(7-8), 1079–1107 (2005)CrossRefGoogle Scholar
  11. 11.
    van Nieuwpoort, R.V., et al.: Satin: Simple and efficient Java-based grid programming. Scalable Computing: Practice and Experience 6(3) (2005)Google Scholar
  12. 12.
    Weaver, J., Hendler, J.: Parallel materialization of the finite rdfs closure for hundreds of millions of triples. In: Bernstein, A., Karger, D.R., Heath, T., Feigenbaum, L., Maynard, D., Motta, E., Thirunarayan, K. (eds.) ISWC 2009. LNCS, vol. 5823, pp. 682–697. Springer, Heidelberg (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Jacopo Urbani
    • 1
  1. 1.Department of Computer ScienceVrije UniversiteitAmsterdam

Personalised recommendations