Computational and Crowdsourcing Methods for Extracting Ontological Structure from Folksonomy

  • Huairen Lin
  • Joseph Davis
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6089)


This paper investigates the unification of folksonomies and ontologies in such a way that the resulting structures can better support exploration and search on the World Wide Web. First, an integrated computational method is employed to extract the ontological structures from folksonomies. It exploits the power of low support association rule mining supplemented by an upper ontology such as WordNet. Promising results have been obtained from experiments using tag datasets from Flickr and Citeulike. Next, a crowdsourcing method is introduced to channel online users’ search efforts to help evolve the extracted ontology.


Association Rule Query Expansion Query Keyword Semantic Search Ontological Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Wu, X., Zhang, L., Yu, Y.: Exploring social annotations for the semantic web. In: Proceeding of the 15th WWW Conference, Edinburgh, Scotland, pp. 417–426. ACM, New York (2006)Google Scholar
  2. 2.
    Braun, S., Schmidt, A., Walter, A.: Ontology maturing: a collaborative web 2.0 approach to ontology engineering, Banff, Canda (2007)Google Scholar
  3. 3.
    Wu, H., Zubair, M., Maly, K.: Harvesting social knowledge from folksonomies. In: The 7th Conference on Hypertext and Hypermedia, Odense, Denmark (2006)Google Scholar
  4. 4.
    Heymann, P., Garcia-Molina, H.: Collaborative creation of communal hierarchical taxonomies in social tagging systems. Technical report, InfoLab, Stanford (2006)Google Scholar
  5. 5.
    Schmitz, C., Hotho, A., Jaschke, R., Stumme, G.: Mining association rules in folksonomies. In: The 10th IFCS Conference, Studies in Classification, Data Analysis, and Knowledge Organization (2006)Google Scholar
  6. 6.
    Angeletou, S., Sabou, M., Motta, E.: Semantically enriching folksonomies with FLOR. In: CISWeb, p. 65 (2008)Google Scholar
  7. 7.
    Cattuto, C., Benz, D., Hotho, A., Stumme, G.: Semantic grounding of tag relatedness in social bookmarking systems. In: Sheth, A.P., Staab, S., Dean, M., Paolucci, M., Maynard, D., Finin, T., Thirunarayan, K. (eds.) ISWC 2008. LNCS, vol. 5318, pp. 615–631. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  8. 8.
    Brabham, D.C.: Crowdsourcing as a model for problem solving: An introduction and cases. Convergence 14(1), 75 (2008)Google Scholar
  9. 9.
    Niepert, M., Buckner, C., Allen, C.: Working the crowd: Design principles and early lessons from the Social-Semantic web (2009)Google Scholar
  10. 10.
    Siorpaes, K., Hepp, M.: Ontogame: Towards overcoming the incentive bottleneck in ontology building. In: 3rd International IFIP Workshop (2007)Google Scholar
  11. 11.
    von Ahn, L., Maurer, B., McMillen, C., Abraham, D., Blum, M.: reCAPTCHA: Human-Based character recognition via web security measures. Science 321(5895), 1465 (2008)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Limpens, F., Gandon, F., Buffa, M.: Collaborative semantic structuring of folksonomies. In: 2009 IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology, pp. 132–135. IEEE Computer Society, Los Alamitos (2009)Google Scholar
  13. 13.
    Lin, H., Davis, J., Zhou, Y.: An integrated approach to extracting ontological structures from folksonomies. In: Aroyo, L., Traverso, P., Ciravegna, F., Cimiano, P., Heath, T., Hyvönen, E., Mizoguchi, R., Oren, E., Sabou, M., Simperl, E. (eds.) ESWC 2009. LNCS, vol. 5554, pp. 654–668. Springer, Heidelberg (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Huairen Lin
    • 1
  • Joseph Davis
    • 1
  1. 1.Knowledge Discovery and Management Research Group, School of ITThe University of SydneyAustralia

Personalised recommendations