iSeM: Approximated Reasoning for Adaptive Hybrid Selection of Semantic Services

  • Matthias Klusch
  • Patrick Kapahnke
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6089)


We present an intelligent service matchmaker, called iSeM, for adaptive and hybrid semantic service selection that exploits the full semantic profile in terms of signature annotations in description logic \({\mathcal SH}\) and functional specifications in SWRL. In particular, iSeM complements its strict logical signature matching with approximated reasoning based on logical concept abduction and contraction together with information-theoretic similarity and evidential coherence-based valuation of the result, and non-logic-based approximated matching. Besides, it may avoid failures of signature matching only through logical specification plug-in matching of service preconditions and effects. Eventually, it learns the optimal aggregation of its logical and non-logic-based matching filters off-line by means of binary SVM-based service relevance classifier with ranking. We demonstrate the usefulness of iSeM by example and preliminary results of experimental performance evaluation.


Description Logic Service Selection Signature Match Informative Quality Binary Relevance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Chang, C.-C., Lin, C.-J.: LIBSVM: a library for support vector machines (2001),
  2. 2.
    Colucci, S., et al.: Concept Abduction and Contraction for Semantic-based Discovery of Matches and Negotiation Spaces in an E-Marketplace. Electronic Commerce Research and Applications 4(4) (2005)Google Scholar
  3. 3.
    Di Noia, T., Di Sciascio, E., Donini, F.M.: A Tableaux-based Calculus for Abduction in Expressive Description Logics: Preliminary Results. In: Proceedings of 22nd International Workshop on Description Logics (DL) (2009)Google Scholar
  4. 4.
    Glass, D.H.: Inference to the Best Explanation: A comparison of approaches. In: Proceedings of the AISB 2009, Convention, Edinburgh, UK (2009),
  5. 5.
    Hau, J., Lee, W., Darlington, J.: A semantic similarity measure for semantic web services. In: Proceedings of Web Service Semantics Workshop at WWW conference (2005)Google Scholar
  6. 6.
    Idestam-Almquist, P.: Generalization of Clauses under Implication. Artificial Intelligence Research 3, 467–489 (1995)zbMATHGoogle Scholar
  7. 7.
    Keerthi, S.S., Lin, C.J.: Asymptotic behaviour of support vector machines with Gaussian kernel. Neural Computation 15(7), 1667–1689 (2003)zbMATHCrossRefGoogle Scholar
  8. 8.
    Klusch, M., Fries, B., Sycara, K.: OWLS-MX: A Hybrid Semantic Web Service Matchmaker for OWL-S Services. In: Web Semantics, vol. 7(2). Elsevier, Amsterdam (2009)Google Scholar
  9. 9.
    Klusch, M., Kapahnke, P.: OWLS-MX3: An Adaptive Hybrid Semantic Service Matchmaker for OWL-S. In: Proceedings of 3rd International Workshop on Semantic Matchmaking and Resource Retrieval (SMR2), USA, CEUR 525 (2009)Google Scholar
  10. 10.
    Klusch, M., Kapahnke, P., Zinnikus, I.: Hybrid Adaptive Web Service Selection with SAWSDL-MX and WSDL Analyzer. In: Aroyo, L., Traverso, P., Ciravegna, F., Cimiano, P., Heath, T., Hyvönen, E., Mizoguchi, R., Oren, E., Sabou, M., Simperl, E. (eds.) ESWC 2009. LNCS, vol. 5554, pp. 550–564. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  11. 11.
    Klusch, M.: Semantic Web Service Coordination. In: Schumacher, M., Helin, H., Schuldt, H. (eds.) CASCOM - Intelligent Service Coordination in the Semantic Web, ch. 4. Birkhuser Verlag, Springer (2008)Google Scholar
  12. 12.
    Klusch, M., Xing, Z.: Deployed Semantic Services for the Common User of the Web: A Reality Check. In: Proceedings of the 2nd IEEE International Conference on Semantic Computing (ICSC), Santa Clara, USA. IEEE Press, Los Alamitos (2008)Google Scholar
  13. 13.
    Li, Y., Bandar, A., McLean, D.: An approach for measuring semantic similarity between words using multiple information sources. Transactions on Knowledge and Data Engineering 15, 871–882 (2003)CrossRefGoogle Scholar
  14. 14.
    Lin, D.: An Information-Theoretic Definition of Similarity. In: Proceedings of the 15th International Conference on Machine Learning, USA (1998)Google Scholar
  15. 15.
    Motik, B., Sattler, U., Studer, R.: Query Answering for OWL-DL with Rules. Web Semantics 3(1), 41–60 (2005)Google Scholar
  16. 16.
    Robinson, J.A.: A Machine-Oriented Logic Based on the Resolution Principle. Association for Computing Machinery 12(1), 23–41 (1965)zbMATHMathSciNetGoogle Scholar
  17. 17.
    Sycara, K., Widoff, S., Klusch, M., Lu, J.: LARKS: Dynamic Matchmaking Among Heterogeneous Software Agents in Cyberspace. In: Autonomous Agents and Multi-Agent Systems, vol. 5, pp. 173–203. Kluwer, Dordrecht (2002)Google Scholar
  18. 18.
    Samuel, K., et al.: Translating OWL and semantic web rules into prolog: Moving toward description logic programs. Theory and Practice of Logic Programming 8(03), 301–322 (2008)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Scheffer, T., Herbrich, R., Wysotzki, F.: Efficient theta-Subsumption based on Graph Algorithms. In: ILP 1996. LNCS, vol. 1314. Springer, Heidelberg (1997)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Matthias Klusch
    • 1
  • Patrick Kapahnke
    • 1
  1. 1.German Research Center for Artificial IntelligenceSaarbrückenGermany

Personalised recommendations