Collaborative Semantic Points of Interests

  • Max Braun
  • Ansgar Scherp
  • Steffen Staab
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6089)


The novel mobile application csxPOI (short for: collaborative, semantic, and context-aware points-of-interest) enables its users to collaboratively create, share, and modify semantic points of interest (POI). Semantic POIs describe geographic places with explicit semantic properties of a collaboratively created ontology. As the ontology includes multiple subclassifications and instantiations and as it links to DBpedia, the richness of annotation goes far beyond mere textual annotations such as tags. Users can search for POIs through the subclass hierarchy of the collaboratively created ontology. For example, a POI annotated as bakery can be found through the search string shop as it is a superclass of bakery. Data mining techniques are employed to cluster and thus improve the quality of the collaboratively created POIs.


Data Mining Technique Semantic Annotation Semantic Search Semantic Point Semantic Similarity Measure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Weiser, M.: The Computer for the 21st Century. Scientific American 265(3) (1991)Google Scholar
  2. 2.
    Boehm, S., Koolwaaij, J., Luther, M., Souville, B., Wagner, M., Wibbels, M.: Introducing IYOUIT. In: Sheth, A.P., Staab, S., Dean, M., Paolucci, M., Maynard, D., Finin, T., Thirunarayan, K. (eds.) ISWC 2008. LNCS, vol. 5318, pp. 804–817. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  3. 3.
    Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.: DBpedia: A Nucleus for a Web of Open Data. In: Aberer, K., Choi, K.-S., Noy, N., Allemang, D., Lee, K.-I., Nixon, L.J.B., Golbeck, J., Mika, P., Maynard, D., Mizoguchi, R., Schreiber, G., Cudré-Mauroux, P. (eds.) ASWC 2007 and ISWC 2007. LNCS, vol. 4825, pp. 722–735. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  4. 4.
    Auer, S., Lehmann, J., Hellmann, S.: Linkedgeodata: Adding a spatial dimension to the web of data. In: Bernstein, A., Karger, D.R., Heath, T., Feigenbaum, L., Maynard, D., Motta, E., Thirunarayan, K. (eds.) ISWC 2009. LNCS, vol. 5823, pp. 731–746. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  5. 5.
    National Imagery and Mapping Agency (NIMA): Department of Defence World Geodetic System 1984. NIMA Technical Report 8350.2 (2004)Google Scholar
  6. 6.
    Winkler, W.E.: The State of Record Linkage and Current Research Problems. R99/04, Statistics of Income Division, U.S. Census Bureau (1999)Google Scholar
  7. 7.
    Rodríguez, M.A., Egenhofer, M.J.: Comparing Geospatial Entity Classes: An Asymmetric and Context-Dependent Similarity Measure. Int. Journal of Geographical Information Science 18 (2004)Google Scholar
  8. 8.
    Ester, M., Kriegel, H.P., Sander, J., Xu, X.: A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise. In: 2nd Int. Conf. on Knowledge Discovery and Data Mining (1996)Google Scholar
  9. 9.
    Becker, C., Bizer, C.: DBpedia Mobile: A Location-Enabled Linked Data Browser. In: 1st Int. Workshop on Linked Data on the Web (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Max Braun
    • 1
  • Ansgar Scherp
    • 1
  • Steffen Staab
    • 1
  1. 1.University of Koblenz-LandauGermany

Personalised recommendations