Advertisement

Usability of Keyword-Driven Schema-Agnostic Search

A Comparative Study of Keyword Search, Faceted Search, Query Completion and Result Completion
  • Thanh Tran
  • Tobias Mathäß
  • Peter Haase
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6089)

Abstract

The increasing amount of data on the Web bears potential for addressing complex information needs more effectively. Instead of keyword search and browsing along links between results, users can specify the needs in terms of complex queries and obtain precise answers right away. However, users might not always know the query language and more importantly, the schema underlying the data. Motivated by the burden facing the data Web search users in specifying complex information needs, we identify a particular class of search approaches that follow a paradigm that we refer to as schema-agnostic. Common to these search approaches is that no knowledge about the schema is required to specify complex information needs. We have conducted a systematic study of four popular approaches: (1) simple keyword search, (2) faceted search, (3) result completion, which is based on computing complex answers as candidate results for user provided keywords, and (4) query completion, which is based on computing structured queries as candidate interpretations of user provided keywords. We study these approaches from a process-oriented view to derive the main conceptual steps required for addressing complex information needs. Then, we perform an experimental study based on established conduct of a task-based evaluation to assess the effectiveness, efficiency and usability.

Keywords

Keyword Search Complex Information Inverted Index Keyword Query Conjunctive Query 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Androutsopoulos, L.: Natural language interfaces to databases - an introduction. Journal of Natural Language Engineering 1, 29–81 (1995)CrossRefGoogle Scholar
  2. 2.
    He, H., Wang, H., Yang, J., Yu, P.S.: Blinks: ranked keyword searches on graphs. In: SIGMOD Conference, pp. 305–316 (2007)Google Scholar
  3. 3.
    Kacholia, V., Pandit, S., Chakrabarti, S., Sudarshan, S., Desai, R., Karambelkar, H.: Bidirectional expansion for keyword search on graph databases. In: VLDB, pp. 505–516 (2005)Google Scholar
  4. 4.
    Hristidis, V., Gravano, L., Papakonstantinou, Y.: Efficient ir-style keyword search over relational databases. In: VLDB, pp. 850–861 (2003)Google Scholar
  5. 5.
    Liu, F., Yu, C.T., Meng, W., Chowdhury, A.: Effective keyword search in relational databases. In: SIGMOD Conference, pp. 563–574 (2006)Google Scholar
  6. 6.
    Hristidis, V., Papakonstantinou, Y.: Discover: Keyword search in relational databases. In: VLDB, pp. 670–681 (2002)Google Scholar
  7. 7.
    Agrawal, S., Chaudhuri, S., Das, G.: Dbxplorer: enabling keyword search over relational databases. In: SIGMOD Conference, p. 627 (2002)Google Scholar
  8. 8.
    Li, G., Ji, S., Li, C., Feng, J.: Efficient type-ahead search on relational data: a tastier approach. In: SIGMOD Conference, pp. 695–706 (2009)Google Scholar
  9. 9.
    Tran, T., Wang, H., Rudolph, S., Cimiano, P.: Top-k exploration of query candidates for efficient keyword search on graph-shaped (RDF) data. In: ICDE, pp. 405–416 (2009)Google Scholar
  10. 10.
    Dash, D., Rao, J., Megiddo, N., Ailamaki, A., Lohman, G.M.: Dynamic faceted search for discovery-driven analysis. In: CIKM, pp. 3–12 (2008)Google Scholar
  11. 11.
    Roy, S.B., Wang, H., Das, G., Nambiar, U., Mohania, M.K.: Minimum-effort driven dynamic faceted search in structured databases. In: CIKM, pp. 13–22 (2008)Google Scholar
  12. 12.
    Fogg, D.: Lessons from a “living in a database” graphical query interface. In: SIGMOD Conference, pp. 100–106 (1984)Google Scholar
  13. 13.
    Tran, T., Wang, H., Haase, P.: Hermes: Data web search on a pay-as-you-go integration infrastructure. J. Web Sem. 7(3), 189–203 (2009)Google Scholar
  14. 14.
    Cheng, G., Qu, Y.: Searching linked objects with falcons: Approach, implementation and evaluation. Int. J. Semantic Web Inf. Syst. 5(3), 49–70 (2009)Google Scholar
  15. 15.
    Tummarello, G., Delbru, R., Oren, E.: Sindice.com: Weaving the open linked data. In: Aberer, K., Choi, K.-S., Noy, N., Allemang, D., Lee, K.-I., Nixon, L.J.B., Golbeck, J., Mika, P., Maynard, D., Mizoguchi, R., Schreiber, G., Cudré-Mauroux, P. (eds.) ASWC 2007 and ISWC 2007. LNCS, vol. 4825, pp. 552–565. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  16. 16.
    Wong, S.K.M., Ziarko, W., Wong, P.C.N.: Generalized vector space model in information retrieval. In: SIGIR, pp. 18–25 (1985)Google Scholar
  17. 17.
    Robertson, S.E., Maron, M.E., Cooper, W.S.: The unified probabilistic model for ir. In: SIGIR, pp. 108–117 (1982)Google Scholar
  18. 18.
    Richardson, M., Domingos, P.: The intelligent surfer: Probabilistic combination of link and content information in pagerank. In: NIPS, pp. 1441–1448 (2001)Google Scholar
  19. 19.
    Robertson, S.E., Zaragoza, H., Taylor, M.J.: Simple bm25 extension to multiple weighted fields. In: CIKM, pp. 42–49 (2004)Google Scholar
  20. 20.
    Ponte, J.M., Croft, W.B.: A language modeling approach to information retrieval. In: SIGIR, pp. 275–281 (1998)Google Scholar
  21. 21.
    Hearst, M., Swearingen, K., Li, K., Yee, K.P.: Faceted metadata for image search and browsing. In: CHI 2003: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 401–408. ACM, New York (2003)Google Scholar
  22. 22.
    Dakka, W., Ipeirotis, P.G., Wood, K.R.: Automatic construction of multifaceted browsing interfaces. In: CIKM 2005: Proceedings of the 14th ACM International Conference on Information and Knowledge Management, pp. 768–775. ACM, New York (2005)CrossRefGoogle Scholar
  23. 23.
    Schraefel, W.M., Russell, A., Smith, D.A.: mspace: improving information access to multimedia domains with multimodal exploratory search. Commun. ACM 49(4), 47–49 (2006)CrossRefGoogle Scholar
  24. 24.
    Hyvönen, E., Mäkelä, E., Salminen, M., Valo, A., Viljanen, K., Saarela, S., Junnila, M., Kettula, S.: Museumfinland – finnish museums on the semantic web. Journal of Web Semantics 3(2), 25 (2005)Google Scholar
  25. 25.
    Ben-Yitzhak, O., Golbandi, N., Har’El, N., Lempel, R., Neumann, A., Ofek-Koifman, S., Sheinwald, D., Shekita, E.J., Sznajder, B., Yogev, S.: Beyond basic faceted search. In: WSDM, pp. 33–44 (2008)Google Scholar
  26. 26.
    Elsweiler, D., Ruthven, I.: Towards task-based personal information management evaluations. In: SIGIR, pp. 23–30 (2007)Google Scholar
  27. 27.
    Bizer, C., Lehmann, J., Kobilarov, G., Auer, S., Becker, C., Cyganiak, R., Hellmann, S.: Dbpedia - a crystallization point for the web of data. J. Web Sem. 7(3), 154–165 (2009)Google Scholar
  28. 28.
    Suchanek, F.M., Kasneci, G., Weikum, G.: Yago: A large ontology from wikipedia and wordnet. J. Web Sem. 6(3), 203–217 (2008)Google Scholar
  29. 29.
    Mathaess, T.: Semantische suchsysteme, Master’s thesis, Karlsruhe Institute of Technology (2009), http://www.stud.uni-karlsruhe.de/~usauk/studium/diplomathesis/damathaess.pdf

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Thanh Tran
    • 1
  • Tobias Mathäß
    • 2
  • Peter Haase
    • 2
  1. 1.Institute AIFBKITKarlsruheGermany
  2. 2.fluid OperationsWalldorfGermany

Personalised recommendations