Combining Query Translation with Query Answering for Efficient Keyword Search

  • Günter Ladwig
  • Thanh Tran
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6089)


Keyword search has been regarded as an intuitive paradigm for searching not only documents but also data, especially when the users are not familiar with the data and the query language. Two types of approaches can be distinguished. Answers to keywords can be computed by searching for matching subgraphs directly in the data. The alternative to this is keyword translation, which is based on searching the data schema for matching join graphs, which are then translated to queries. Answering these queries is performed in the later stage. While clear advantages have been shown for the approaches based on query translation, we observe that processing done during query translation has some overlaps with the processing needed for query answering. We propose a tight integration of query translation with query answering. Instead of using the schema, we employ a bisimulation-based structure index graph. Searching this index for matching subgraphs results not only in queries, but also candidate answers. We propose a set of algorithms which allow for an incremental process, where intermediate results computed during query translation can be reused for query answering. In experiments, we show that this integrated approach consistently outperforms the state of the art.


  1. 1.
    Abadi, D.J., Marcus, A., Madden, S., Hollenbach, K.J.: Scalable Semantic Web Data Management Using Vertical Partitioning. In: VLDB, pp. 411–422 (2007)Google Scholar
  2. 2.
    Agrawal, S., Chaudhuri, S., Das, G.: DBXplorer: enabling keyword search over relational databases. In: SIGMOD Conference, p. 627 (2002)Google Scholar
  3. 3.
    Bhalotia, G., Hulgeri, A., Nakhe, C., Chakrabarti, S., Sudarshan, S.: Keyword searching and browsing in databases using banks. In: ICDE, pp. 431–440 (2002)Google Scholar
  4. 4.
    Buneman, P., Davidson, S., Fernandez, M., Suciu, D.: Adding Structure to Unstructured Data. In: Afrati, F.N., Kolaitis, P.G. (eds.) ICDT 1997. LNCS, vol. 1186, pp. 336–350. Springer, Heidelberg (1997)Google Scholar
  5. 5.
    Djokic, B., Miyakawa, M., Sekiguchi, S., Semba, I., Stojmenovic, I.: A Fast Iterative Algorithm for Generating Set Partitions. Comput. J. 32(3), 281–282 (1989)CrossRefGoogle Scholar
  6. 6.
    Dong, X., Halevy, A.Y.: Indexing dataspaces. In: SIGMOD Conference, pp. 43–54 (2007)Google Scholar
  7. 7.
    Goldman, R., Widom, J.: DataGuides: Enabling Query Formulation and Optimization in Semistructured Databases. In: VLDB, pp. 436–445 (1997)Google Scholar
  8. 8.
    Guo, Y., Pan, Z., Heflin, J.: LUBM: A benchmark for OWL knowledge base systems. J. Web Sem. 3(2-3), 158–182 (2005)Google Scholar
  9. 9.
    He, H., Wang, H., Yang, J., Yu, P.S.: Blinks: ranked keyword searches on graphs. In: SIGMOD Conference, pp. 305–316 (2007)Google Scholar
  10. 10.
    Hristidis, V., Gravano, L., Papakonstantinou, Y.: Efficient ir-style keyword search over relational databases. In: VLDB, pp. 850–861 (2003)Google Scholar
  11. 11.
    Hristidis, V., Papakonstantinou, Y.: DISCOVER: Keyword Search in Relational Databases. In: VLDB, pp. 670–681 (2002)Google Scholar
  12. 12.
    Kacholia, V., Pandit, S., Chakrabarti, S., Sudarshan, S., Desai, R., Karambelkar, H.: Bidirectional Expansion For Keyword Search on Graph Databases. In: VLDB, pp. 505–516 (2005)Google Scholar
  13. 13.
    Kaushik, R., Bohannon, P., Naughton, J.F., Korth, H.F.: Covering indexes for branching path queries. In: SIGMOD Conference, pp. 133–144 (2002)Google Scholar
  14. 14.
    Liu, F., Yu, C.T., Meng, W., Chowdhury, A.: Effective keyword search in relational databases. In: SIGMOD Conference, pp. 563–574 (2006)Google Scholar
  15. 15.
    Neumann, T., Weikum, G.: Rdf-3x: A risc-style engine for RDF. PVLDB 1(1), 647–659 (2008)Google Scholar
  16. 16.
    Qun, C., Lim, A., Ong, K.W.: D(k)-Index: An Adaptive Structural Summary for Graph-Structured Data. In: SIGMOD Conference, pp. 134–144 (2003)Google Scholar
  17. 17.
    Tran, T., Ladwig, G., Rudolph, S.: Efficient RDF Data Management Using Structure-based Partitioning and Structure-aware Query Processing. Technical report,
  18. 18.
    Tran, T., Wang, H., Rudolph, S., Cimiano, P.: Top-k Exploration of Query Candidates for Efficient Keyword Search on Graph-Shaped (RDF) Data. In: ICDE, pp. 405–416 (2009)Google Scholar
  19. 19.
    Weiss, C., Karras, P., Bernstein, A.: Hexastore: sextuple indexing for semantic web data management. PVLDB 1(1), 1008–1019 (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Günter Ladwig
    • 1
  • Thanh Tran
    • 1
  1. 1.Institute AIFBKarlsruhe Institute of TechnologyGermany

Personalised recommendations