Advertisement

Using Social Media for Ontology Enrichment

  • Paola Monachesi
  • Thomas Markus
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6089)

Abstract

In order to support informal learning, we complement the formal knowledge represented by ontologies developed by domain experts with the informal knowledge emerging from social tagging. To this end, we have developed an ontology enrichment pipeline that can automatically enrich a domain ontology using: data extracted by a crawler from social media applications, similarity measures, the DBpedia knowledge base, a disambiguation algorithm and several heuristics. The main goal is to provide dynamic and personalized domain ontologies that include the knowledge of the community of users.

Keywords

Similarity Measure Cosine Similarity Domain Ontology Input Term Python Programming Language 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Auer, S., Bizer, C., Lehmann, J., Kobilarov, G., Cyganiak, R., Ives, Z.: DBpedia: A nucleus for a web of open data. In: Aberer, K., Choi, K.-S., Noy, N., Allemang, D., Lee, K.-I., Nixon, L.J.B., Golbeck, J., Mika, P., Maynard, D., Mizoguchi, R., Schreiber, G., Cudré-Mauroux, P. (eds.) ASWC 2007 and ISWC 2007. LNCS, vol. 4825, pp. 722–735. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  2. 2.
    Brandes, U.: A Faster Algorithm for Betweenness Centrality. Journal of Mathematical Sociology 25(2), 163–177 (2001)zbMATHGoogle Scholar
  3. 3.
    Brooks, C.H., Montanez, N.: Improved annotation of the blogosphere via auto- tagging and hierarchical clustering. In: WWW 2006: Proceedings of the 15th in- ternational conference on World Wide Web, pp. 625–632. ACM, New York (2006)CrossRefGoogle Scholar
  4. 4.
    Cattuto, C., Benz, D., Hotho, A., Stumme, G.: Semantic grounding of tag relatedness in social bookmarking systems. In: Sheth, A.P., Staab, S., Dean, M., Paolucci, M., Maynard, D., Finin, T., Thirunarayan, K. (eds.) ISWC 2008. LNCS, vol. 5318, pp. 615–631. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  5. 5.
    Cucerzan, S.: Large-scale named entity disambiguation based on Wikipedia data. In: Proceedings of EMNLP-CoNLL, pp. 708–716 (2007)Google Scholar
  6. 6.
    van Damme, M., Hepp, K., Siorpaes, K.: Folksontology: An integrated approach for turning folksonomies into ontologies. In: Proceedings of the ESWC Workshop Bridging the Gap between Semantic Web and Web 2.0, Innsbruck, Austria. Springer, Heidelberg (2007)Google Scholar
  7. 7.
    Gemmell, J., Shepitsen, A., Mobasher, B., Burke, R.: Personalization in Folksonomies Based on Tag Clustering. In: Intelligent Techniques for Web Personalization & Recommender Systems (2008)Google Scholar
  8. 8.
    Heymann, P., Garcia-Molina, H.: Collaborative Creation of Communal Hierarchical Taxonomies in Social Tagging Systems. Stanford InfoLab Technical Report 2006-10 (2006)Google Scholar
  9. 9.
    Kohonen, T.: The self-organizing map. Neurocomputing 21(1-3), 1–6 (1998)zbMATHCrossRefGoogle Scholar
  10. 10.
    Lemnitzer, L., Simov, K., Osenova, P., Mossel, E., Monachesi, P.: Using a domainontology and semantic search in an eLearning environment. In: Proceedings of The Third International Joint Conferences on Computer, Information and Systems Sciences, and Engineering (CISSE 2007). Springer, Heidelberg (2007)Google Scholar
  11. 11.
    Mika, P.: Ontologies are us: A unified model of social networks and semantics. Journal of Web Semantics 5(1), 5–15 (2007)MathSciNetGoogle Scholar
  12. 12.
    Miles, A., Matthews, B., Wilson, M., Brickley, D.: SKOS Core: Simple knowledge organisation for the web. In: Proceedings of the International Conference on Dublin Core and Metadata Applications, pp. 12–15 (2005)Google Scholar
  13. 13.
    Monachesi, P., Markus, T., Mossel, E.: Ontology Enrichment with Social Tags for eLearning. In: Cress, U., Dimitrova, V., Specht, M. (eds.) EC-TEL 2009. LNCS, vol. 5794, pp. 385–390. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  14. 14.
    Monachesi, P., Simov, K., Mossel, E., Osenova, P.: What ontologies can do for eLearning. In: Proceedings of International Conference on Interactive Mobile and Computer Aided Learning, IMCL 2008 (2008)Google Scholar
  15. 15.
    Passant, A., Laublet, P.: Meaning of A Tag: A collaborative approach to bridge the gap between tagging and Linked Data. In: Proceedings of the WWW 2008 Workshop Linked Data on the Web (LDOW 2008), Beijing, China (2008)Google Scholar
  16. 16.
    Ronzano, F., Marchetti, A., Tesconi, M., Minutoli, S.: Tagpedia: a semantic reference to describe and search for web resources. In: Proc. of The Workshop Social Web and Knowledge Management of the World Wide Web Conference, vol. 8, pp. 19–25 (2008)Google Scholar
  17. 17.
    Schmitz, P.: Inducing Ontology from Flickr Tags. In: Proceedings of the Collaborative Web Tagging Workshop at the 15th WWW Conference (WWW 2006), Edinburgh, Scotland (2006)Google Scholar
  18. 18.
    SigurbjŽrnsson, B., van Zwol, R.: Flickr tag recommendation based on collective knowledge. In: Proc. 17th Intl. Conf. on World Wide Web, pp. 327–336 (2008)Google Scholar
  19. 19.
    Specia, L., Motta, E.: Integrating Folksonomies with the Semantic Web. In: Franconi, E., Kifer, M., May, W. (eds.) ESWC 2007. LNCS, vol. 4519, pp. 624–639. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  20. 20.
    Wu, X., Zhang, L., Yu, Y.: Exploring Social Annotations for the Semantic Web. In: Proc. of WWW 2006 (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Paola Monachesi
    • 1
  • Thomas Markus
    • 1
  1. 1.Utrecht UniversityUtrechtThe Netherlands

Personalised recommendations