Skip to main content

Modeling Individualization in a Bayesian Networks Implementation of Knowledge Tracing

  • Conference paper
User Modeling, Adaptation, and Personalization (UMAP 2010)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 6075))

Abstract

The field of intelligent tutoring systems has been using the well known knowledge tracing model, popularized by Corbett and Anderson (1995), to track student knowledge for over a decade. Surprisingly, models currently in use do not allow for individual learning rates nor individualized estimates of student initial knowledge. Corbett and Anderson, in their original articles, were interested in trying to add individualization to their model which they accomplished but with mixed results. Since their original work, the field has not made significant progress towards individualization of knowledge tracing models in fitting data. In this work, we introduce an elegant way of formulating the individualization problem entirely within a Bayesian networks framework that fits individualized as well as skill specific parameters simultaneously, in a single step. With this new individualization technique we are able to show a reliable improvement in prediction of real world data by individualizing the initial knowledge parameter. We explore three difference strategies for setting the initial individualized knowledge parameters and report that the best strategy is one in which information from multiple skills is used to inform each student’s prior. Using this strategy we achieved lower prediction error in 33 of the 42 problem sets evaluated. The implication of this work is the ability to enhance existing intelligent tutoring systems to more accurately estimate when a student has reached mastery of a skill. Adaptation of instruction based on individualized knowledge and learning speed is discussed as well as open research questions facing those that wish to exploit student and skill information in their user models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Atkinson, R.C., Paulson, J.A.: An approach to the psychology of instruction. Psychological Bulletin 78, 49–61 (1972)

    Article  Google Scholar 

  2. Corbett, A.T., Anderson, J.R.: Knowledge tracing: modeling the acquisition of procedural knowledge. User Modeling and User-Adapted Interaction 4, 253–278 (1995)

    Article  Google Scholar 

  3. Corbett, A., Bhatnagar, A.: Student Modeling in the ACT Programming Tutor: Adjusting a Procedural Learning Model with Declarative Knowledge. In: Jameson, A., Paris, C., Tasso, C. (eds.) Proceedings of the 6th International Conference on User Modeling, pp. 243–254 (1997)

    Google Scholar 

  4. Baker, R.S.J.d., Corbett, A.T., Aleven, V.: More accurate student modeling through contextual estimation of slip and guess probabilities in bayesian knowledge tracing. In: Woolf, B.P., Aïmeur, E., Nkambou, R., Lajoie, S. (eds.) ITS 2008. LNCS, vol. 5091, pp. 406–415. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  5. Beck, J.E., Chang, K.M.: Identifiability: A Fundamental Problem of Student Modeling. In: Conati, C., McCoy, K., Paliouras, G. (eds.) UM 2007. LNCS (LNAI), vol. 4511, pp. 137–146. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  6. Reye, J.: Student modelling based on belief networks. International Journal of Artificial Intelligence in Education 14, 63–96 (2004)

    Google Scholar 

  7. Chang, K.M., Beck, J.E., Mostow, J., Corbett, A.: A Bayes Net Toolkit for Student Modeling in Intelligent Tutoring Systems. In: Ikeda, M., Ashley, K.D., Chan, T.-W. (eds.) ITS 2006. LNCS, vol. 4053, pp. 104–113. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  8. Ritter, S., Harris, T., Nixon, T., Dickison, D., Murray, C., Towle, B.: Reducing the knowledge tracing space. In: Proceedings of the 2nd International Conference on Educational Data Mining, Cordoba, Spain, pp. 151–160 (2009)

    Google Scholar 

  9. Draney, K.L., Pirolli, P., Wilson, M.: A measurement model for a complex cognitive skill. In: Nichols, P.D., Chipman, S.F., Brennan, R.L. (eds.) Cognitively diagnostic assessment, pp. 103–125. Erlbaum, Hillsdale (1995)

    Google Scholar 

  10. Pavlik, P.I., Cen, H., Koedinger, K.R.: Performance Factors Analysis - A New Alternative to Knowledge Tracing. In: Proceedings of the 14th International Conference on Artificial Intelligence in Education, Brighton, UK, pp. 531–538 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pardos, Z.A., Heffernan, N.T. (2010). Modeling Individualization in a Bayesian Networks Implementation of Knowledge Tracing. In: De Bra, P., Kobsa, A., Chin, D. (eds) User Modeling, Adaptation, and Personalization. UMAP 2010. Lecture Notes in Computer Science, vol 6075. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13470-8_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13470-8_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13469-2

  • Online ISBN: 978-3-642-13470-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics