Bacterial Attachment Response on Titanium Surfaces with Nanometric Topographic Features

  • Vi Khanh Truong
  • James Wang
  • Rimma Lapovok
  • Yuri Estrin
  • Francois Malherbe
  • Christopher Berndt
  • Russell Crawford
  • Elena IvanovaEmail author
Conference paper
Part of the Progress in Colloid and Polymer Science book series (PROGCOLLOID, volume 137)


The bacterial attachment response on titanium surfaces with various degrees of nano-roughness in the range of 14 nm to 0.6 nm has been investigated. Titanium surfaces were fabricated from commercial purity grade 2 (as-received) titanium, titanium modified by equal channel angular pressing (modified titanium) and titanium thin film of 12 nm and 150 nm obtained using a magnetron sputtering system. The chemical composition, wettability and surface architecture of Ti surfaces were characterised using X-ray photoelectron spectroscopy, contact angle measurements and atomic force microscopy. Two human pathogenic bacteria, Staphylococcus aureus CIP 68.5 and Pseudomonas aeruginosa ATCC 9025 were found to respond differently to each of the tested surfaces. The results indicate that bacteria can differentiate between surfaces with the fine (less than 1 nm) change of topographic characteristics, the number of retained cells differing by a factor of up to 2.


Titanium surfaces Equal channel angular pressing (ECAP) Titanium thin films Bacterial adhesion Staphylococcus aureus Pseudomonas aeruginosa Nanotopography 



This study was supported in part by Australian Research Council (ARC) and Advanced Manufacturing CRC. VKT is a recipient of Postgraduate Swinburne University Postgraduate Research Award. YE would like to acknowledge support through World Class University project of National Research Foundation of Korea funded by the Ministry of Education, Science and Technology (R31-2008-000-10075-0).


  1. 1.
    K.A. Whitehead, J. Verran, (2007) Int. Biodeterior. Biodegrad. 60: 74-80.CrossRefGoogle Scholar
  2. 2.
    Y.L. Jeyachandran, B. Karunagaran, S.K. Narayandass, D. Mangalaraj, T.E. Jenkins, P.J. Martin, (2006) Mater. Sci. Eng. A 431: 277-284.CrossRefGoogle Scholar
  3. 3.
    M.C. Hudson, W.K. Ramp, K.P. Frankenburg, (1999) FEMS Microbiol. Lett. 173: 279-284.CrossRefGoogle Scholar
  4. 4.
    Y.L. Ong, A. Razatos, G. Georgiou, M.M. Sharma, (1999) Langmuir 15: 2719-2725.CrossRefGoogle Scholar
  5. 5.
    C. Diaz, M.C. Cortizo, P.L. Schilardi, S.G.G. de Saravia, M.A.F.L. de Mele, (2007) Mater. Res. 10: 11-14.Google Scholar
  6. 6.
    R.M. Donlan, (2001) Clin. Infect. Dis. 33: 1387-1392.CrossRefGoogle Scholar
  7. 7.
    Y.H. An, R.J. Friedman, R.A. Draughn, E.A. Smith, J.H. Nicholson, J.F. John, (1995) J. Microbiol. Methods 24: 29-40.CrossRefGoogle Scholar
  8. 8.
    G.J. Tortora, B.R. Funke, C.L. Case, Microbiology: An Introduction, 8th ed., Pearson Education Inc, Benjamin Cummings, San Francisco, 2004.Google Scholar
  9. 9.
    L. Troidle, F. Finkelstein, (2006) Ann. Clin. Microbiol. Antimicrob. 5: 1-7.CrossRefGoogle Scholar
  10. 10.
    Y. Estrin, C. Kasper, S. Diederichs, R. Lapovok, (2009) J Biomed Mater Res - Part A 90A: 1239-1242.Google Scholar
  11. 11.
    E.P. Ivanova, V.K. Truong, J. Wang, C.C. Berndt, T.R. Jones, I.I. Yusuf, I. Peake, H.W. Schmidt, C. Fluke, D. Barnes, R.J. Crawford, (2010) Langmuir 26: 1973-1982CrossRefGoogle Scholar
  12. 12.
    D. Oner, T.J. McCarthy, (2000) Langmuir 16: 7777-7782.CrossRefGoogle Scholar
  13. 13.
    V.K. Truong, S. Rundell, R. Lapovok, Y. Estrin, J.Y. Wang, C.C. Berndt, D.G. Barnes, C.J. Fluke, R.J. Crawford, E.P. Ivanova, (2009) Appl. Microbiol. Biotech. 83: 925-937.CrossRefGoogle Scholar
  14. 14.
    N. Mitik-Dineva, J. Wang, R.C. Mocanasu, P.R. Stoddart, R.J. Crawford, E.P. Ivanova, (2008) Biotech. J. 3: 536-544.CrossRefGoogle Scholar
  15. 15.
    A.J. de Kerchove, M. Elimelech, (2005) Langmuir 21: 6462-6472.CrossRefGoogle Scholar
  16. 16.
    K.E. Eboigbodin, J.R.A. Newton, A.F. Routh, C.A. Biggs, (2005) Langmuir 21: 12315-12319.CrossRefGoogle Scholar
  17. 17.
    K. Cai, M. Muller, J. Bossert, A. Rechtenbach, K.D. Jandt, (2005) Applied Surface Science 250: 252-267.CrossRefGoogle Scholar
  18. 18.
    I. Bertóti, M. Mohai, J. Sullivan, S. Saied, (1995) Appl. Surface Science 84: 357-371.CrossRefGoogle Scholar
  19. 19.
    X. Liu, P.K. Chu, C. Ding, (2004) Mater. Sci. Eng. R: Reports 47: 49-121.CrossRefGoogle Scholar
  20. 20.
    D. Öner, T.J. McCarthy, (2000) Langmuir 16: 7777-7782.CrossRefGoogle Scholar
  21. 21.
    M. Gross, S.E. Cramton, F. Gotz, A. Peschel, (2001) Infect. Immun. 69: 3423-3426.CrossRefGoogle Scholar
  22. 22.
    B. Li, B.E. Logan, (2004) Colloids Surf B: Biointerfaces 36: 81-90.CrossRefGoogle Scholar
  23. 23.
    V. Vadillo-Rodriguez, H.J. Busscher, W. Norde, J. Vries, H.C. van der Mei, (2004) J Colloid Interface Sci 278: 251-254.CrossRefGoogle Scholar
  24. 24.
    L.G. Harris, S. Tosatti, M. Wieland, M. Textor, R.G. Richards, (2004) Biomaterials 25: 4135-4148.CrossRefGoogle Scholar
  25. 25.
    T.R. Scheuerman, A.K. Camper, M.A. Hamilton, (1998) J. Colloid Interface Sci. 208: 23-33.CrossRefGoogle Scholar
  26. 26.
    R. Bos, H.C. Van Der Mei, H.J. Busscher, (1999) FEMS Microbiol. Rev. 23: 179-229.Google Scholar
  27. 27.
    N. Mitik-Dineva, J. Wang, V.K. Truong, P. Stoddart, F. Malherbe, R.J. Crawford, E.P. Ivanova, (2009) Curr. Microbiol. 58: 268-273.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Vi Khanh Truong
    • 1
  • James Wang
    • 2
  • Rimma Lapovok
    • 3
  • Yuri Estrin
    • 3
    • 4
  • Francois Malherbe
    • 1
  • Christopher Berndt
    • 2
  • Russell Crawford
    • 1
  • Elena Ivanova
    • 1
    Email author
  1. 1.Faculty of Life and Social SciencesSwinburne University of TechnologyHawthornAustralia
  2. 2.IRISSwinburne University of TechnologyHawthornAustralia
  3. 3.ARC Centre of Excellence for Design in Light Metals, Department of Materials EngineeringMonash UniversityClaytonAustralia
  4. 4.CSIRO Division of Process Science and EngineeringClayton SouthAustralia

Personalised recommendations