Percolation and Jamming in Random Heterogeneous Materials with Competing Length Scales

  • Andriy V. KyrylyukEmail author
  • Alan Wouterse
  • Albert P. Philipse
Conference paper
Part of the Progress in Colloid and Polymer Science book series (PROGCOLLOID, volume 137)


Dense packings of particles of different size and shape are simulated by the mechanical contraction method (MCM). The effect of particle shape and particle size disparity on the packing density and micro-structure of two-component composite materials with competing length scales is investigated. We propose a simple analytical model to calculate the maximum packing fraction of such a mixture, which considers two co-existing random networks of large and small particles. The model predicts a non-monotonic behavior of the total packing fraction as a function of the mixture composition with the absolute maximum in packing fraction when the two sub-systems of large and small particles simultaneously jam. The mechanical contraction simulations corroborate this finding and also provide additional results for arbitrary particle size disparity. The simulated granular materials composed of frictionless spherical and rod-like particles also exhibit a non-monotonic dependence of the onset of rigidity percolation or jamming transition on the rod elongation.


Random packing Rigidity percolation Jamming Composite materials Granular mixtures 



This work was sponsored by Senter Novem (Dutch Ministry of Economic Affairs) and Shell Global Solutions International B.V (Amsterdam, The Netherlands).


  1. 1.
    Torquato S (2002) Random Heterogeneous Materials, Springer, New York.Google Scholar
  2. 2.
    Aste T, Weaire D (2000) The Pursuit of Perfect Packing, Institute of Physics, Bristol.CrossRefGoogle Scholar
  3. 3.
    Katz HS, Milevski JV (1978) Handbook of Fillers and Reinforcements for Plastics, Van Nostrand Reinhold, New York.Google Scholar
  4. 4.
    Kyrylyuk AV, van der Schoot P (2008) Proc Natl Acad Sci USA 105:8221.CrossRefGoogle Scholar
  5. 5.
    Hermant MC, Klumperman B, Kyrylyuk AV, van der Schoot P, Koning CE (2009) Soft Matter 5:878.CrossRefGoogle Scholar
  6. 6.
    Grossiord N, Kivit PJJ, Loos J, Meuldijk J, Kyrylyuk AV, van der Schoot P, Koning CE (2008) Polymer 49:2866.CrossRefGoogle Scholar
  7. 7.
    Donev A, Cisse I, Sachs D, Variano EA, Stillinger FH, Connelly R, Torquato S, Chaikin PM (2004) Science 303:990.CrossRefGoogle Scholar
  8. 8.
    Williams SR, Philipse AP (2003) Phys Rev E 67:051301.CrossRefGoogle Scholar
  9. 9.
    Kyrylyuk AV, Wouterse A, Philipse AP (2009) AIP Conf Proc 1145:211.CrossRefGoogle Scholar
  10. 10.
    Wouterse A, Williams SR, Philipse AP (2007) J Phys Condens Matter 19:406215.CrossRefGoogle Scholar
  11. 11.
    Thies-Weesie DME, Philipse AP (1994) J Colloid Int Sci 162:470.CrossRefGoogle Scholar
  12. 12.
    He D, Ekere NN, Cai L (1999) Phys Rev E 60:7098.CrossRefGoogle Scholar
  13. 13.
    Yu AB, Standish N (1988) Powder Technol 55:171.CrossRefGoogle Scholar
  14. 14.
    Farr RS, Groot RD (2009) J Chem Phys 131:244104.CrossRefGoogle Scholar
  15. 15.
    Biazzo I, Caltagirone F, Parisi G, Zamponi F (2009) Phys Rev Lett 102:195701.CrossRefGoogle Scholar
  16. 16.
    Clusel M, Corwin EI, Siemens AON, Brujic J (2009) Nature 460:611.CrossRefGoogle Scholar
  17. 17.
    Biazzo I, Caltagirone F, Parisi G, Zamponi F (2010) J Chem Phys, submitted.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Andriy V. Kyrylyuk
    • 1
    Email author
  • Alan Wouterse
  • Albert P. Philipse
  1. 1.Van ‘t Hoff Laboratory for Physical and Colloid Chemistry, Debye Institute for NanoMaterials ScienceUtrecht UniversityUtrechtThe Netherlands

Personalised recommendations