Advertisement

pH- and Thermo-responsive Polymer Assemblies in Aqueous Solution

  • Elodie SibandEmail author
  • Yvette Tran
  • Dominique Hourdet
Conference paper
Part of the Progress in Colloid and Polymer Science book series (PROGCOLLOID, volume 137)

Abstract

Responsive polymers were prepared by copolymerizing a small amount of ionizable monomers, acrylic acid or N,N-dimethylaminopropylmethacrylamide, with N-isopropylacrylamide (NIPA) and the solubility in aqueous solution of these PNIPA derivatives were quantitatively studied. From differential scanning calorimetry experiments, it was shown that the pH strongly influences the phase separation of these copolymers (temperature and enthalpy), which totally disappears when ionizable groups are fully charged. At pH 7, all PNIPA copolymers remain soluble in water at all temperatures but their mixtures show a phase separation above a critical temperature due to the formation of a reversible inter-polyelectrolyte complex. When the responsive stickers are grafted on a poly(acrylamide) backbone, pH and temperature are still able to drive the association process at a local scale, giving rise to a sol/gel transition of semi-dilute solutions. The structure and the viscoelastic properties of these macromolecular assemblies are investigated by small angle neutron scattering and rheology and their responsivity is discussed as a function of pH and temperature.

Keywords

responsive polymers associating polymers pnipa 

Notes

Acknowledgments

The authors want to thank Dr. Guylaine Ducouret (PPMD, ESPCI-Paris) for her experienced advices on performing rheological measurements on associating polymers and Dr. Annie Brûlet (LLB, CEA-Saclay) for her helpful guidance in neutron scattering experiments.

References

  1. 1.
    Responsive Gels: Volume Transitions, Adv. Polymer Sci., 109 and 110 (1993).Google Scholar
  2. 2.
    H.G. Schild, Prog. Polym. Sci., 17, 163 (1992).CrossRefGoogle Scholar
  3. 3.
    Y. Osada, S. B. Ross-Murphy, cientific American, 82 (1993).Google Scholar
  4. 4.
    X. Wang, C. Wu, Macromolecules, 32, 4299 (1999).CrossRefGoogle Scholar
  5. 5.
    R. Pelton, Adv. Colloid Interface Sci., 85, 1 (2000).CrossRefGoogle Scholar
  6. 6.
    X.-Z. Zhang, D.-Q. Wu, C.-C. Chu, Biomaterials, 25, 3793 (2004).CrossRefGoogle Scholar
  7. 7.
    G. H. Chen, A. S. Hoffman, Nature, 373, 49 (1995).CrossRefGoogle Scholar
  8. 8.
    G. Bokias, V. V. Vasilevskaya, I. Iliopoulos, D. Hourdet, A. R. Khokhlov, Macromolecules, 33, 9757 (2000).CrossRefGoogle Scholar
  9. 9.
    Y. Q. Zhang, T. Tanaka, M. Shibayama, Nature, 360, 142 (1992).CrossRefGoogle Scholar
  10. 10.
    M. Shibayama, F. Ikkai, S. Inamoto, S. Nomura, C. C. Han, J. Chem. Phys., 105, 4358 (1996).CrossRefGoogle Scholar
  11. 11.
    L. Petit, C. Karakasyan, N. Pantoustier, D. Hourdet, Polymer, 48, 7098 (2007).CrossRefGoogle Scholar
  12. 12.
    H. G. Schild, D. A. Tirrell, Phys. Chem., 94, 4352 (1990).CrossRefGoogle Scholar
  13. 13.
    L. Petit, L. Bouteiller, A. Brûlet, F. Lafuma, D. Hourdet, Langmuir, 23, 147 (2007).CrossRefGoogle Scholar
  14. 14.
    D. Hourdet, J. Gadgil, K. Podhajecka, M. V. Badiger, A. Brûlet, P. P. Wadgaonkar, Macromolecules, 38, 8512 (2005).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Physico-chimie des Polymères et des Milieux Dispersés (UMR 7615 UPMC-CNRS-ESPCI)ParisFrance

Personalised recommendations