Advertisement

Synthesis of Carbide Compounds Derived from Colloidal Oxide and Carbohydrate

  • X. DeschanelsEmail author
  • M. El Ghazzal
  • C. Delchet
  • D. Herault
  • V. Magnin
  • A. Grandjean
  • R. Podor
  • G. Cerveau
  • T. Zemb
  • R. Corriu
Conference paper
Part of the Progress in Colloid and Polymer Science book series (PROGCOLLOID, volume 137)

Abstract

Silicon carbide (SiC) and zirconium carbide (ZrC) powders were synthesized by the carbothermal reduction reaction of carbon and the corresponding metal oxide silica or zirconia respectively. The physical and chemical properties of the final products were studied according to the nature of precursors used: colloidal or micrometric powders for the oxides, sucrose, mannitol or sorbitol for the reducing agent. After mixing and freeze drying of these components, the powder was heated at temperatures ranging from 1300 and 1550°C under flowing argon to obtain the carbides. Depending on the nature of the precursors (colloidal or micrometric) an increase of more than one order in the magnitude of the surface area was observed. The highest surface area (300m2/g) was measured on a ZrC+C compound type elaborated from a colloidal precursor. The use of colloids in carbothermal reaction could be a route to control pore size in mesoporous carbides or supported porous carbon materials.

Keywords

Carbide Carbothermal reduction Colloidal route Carbohydrate 

References

  1. 1.
    Oyama ST (1996) Introduction to the chemistry of transition metal carbides and nitrides. In: Chapman & Hall (eds) The chemistry of transition metal carbides and nitrides, Eds, p. 1Google Scholar
  2. 2.
    Oyama ST (1992) Catalysis Today 15 :179CrossRefGoogle Scholar
  3. 3.
    Gomes S, David L et al. (2008) Eur Phys J Special Topics 153:87CrossRefGoogle Scholar
  4. 4.
    Juenke EF (1964) Report GEMP-267Google Scholar
  5. 5.
    Dollé M, Gosset D, Bogicevic C et al. (2007) J Eur Cer Soc 27:2061CrossRefGoogle Scholar
  6. 6.
    Sacks MD, Wang CA et al. (2004) J Mater Sci 39:6057CrossRefGoogle Scholar
  7. 7.
  8. 8.
    Corriu RJP (2000) Angew Chem Int Ed 39:1376CrossRefGoogle Scholar
  9. 9.
    Martin HP, Müller E, Knoll Y, Strienitz R, Schuster G (1995) J Mater Sci Lett 14:620CrossRefGoogle Scholar
  10. 10.
    Martin H-P, Ecke R, Müller E (1998) J Eur Cer Soc 18:1737CrossRefGoogle Scholar
  11. 11.
    Wei GC, Kennedy CR, Harris LA (1984) Ceram Bull 63-8:1054Google Scholar
  12. 12.
    Julbe A, Larbot A, Guizard C, Cot L, Charpin J, Bergez P (1990) Mat Res Bull 25:601CrossRefGoogle Scholar
  13. 13.
    Kevorkijan VM, Komac M, Kolar D (1992) J Mat Sci 27:2705CrossRefGoogle Scholar
  14. 14.
    Guo G-Y, ChenY (2006) Appl Phys A 84:431CrossRefGoogle Scholar
  15. 15.
    Wei GC (1983) J Am Cer Soc 66-7:C111CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • X. Deschanels
    • 1
    Email author
  • M. El Ghazzal
    • 1
  • C. Delchet
    • 1
  • D. Herault
    • 2
  • V. Magnin
    • 1
  • A. Grandjean
    • 1
  • R. Podor
    • 1
  • G. Cerveau
    • 2
  • T. Zemb
    • 1
  • R. Corriu
    • 2
  1. 1.Institut de Chimie Séparative de Marcoule, UMR 5257Bagnols-sur-CèzeFrance
  2. 2.Institut Charles Gerhardt, UMR 5253, Université de Montpellier 2MontpellierFrance

Personalised recommendations