Does Trust Matter for User Preferences? A Study on Epinions Ratings

  • Georgios Pitsilis
  • Pern Hui Chia
Part of the IFIP Advances in Information and Communication Technology book series (IFIPAICT, volume 321)


Recommender systems have evolved during the last few years into useful online tools for assisting the daily e-commerce activities. The majority of recommender systems predict user preferences relating users with similar taste. Prior research has shown that trust networks improve the performance of recommender systems, predominantly using algorithms devised by individual researchers. In this work, omitting any specific trust inference algorithm, we investigate how useful it might be if explicit trust relationships (expressed by users for others) are used to select the best neighbours (or predictors), for the provision of accurate recommendations. We conducted our experiments using data from, a popular recommender system. Our analysis indicates that trust information can be helpful to provide a slight performance gain in a few cases especially when it comes to the less active users.


Trust Epinions Recommender system 


  1. 1.
    McNee, M.S., Riedl, J., Konstan, J.A.: Accurate is not always good. How Accuracy Metrics have hurt. Recommender Systems. In: Proc. ACM, CHI 2006, Montreal, Canada, April 22-27 (2006)Google Scholar
  2. 2.
    Massa, P., Avesani, P.: Trust-aware recommender systems. In: Proc. RecSys 2007, pp. 17–24 (2007)Google Scholar
  3. 3.
    Herlocker, J.L., Konstan, J.A., Borchers, A., Riedl, J.: An algorithmic framework for performing collaborative filtering. In: Proc. 22nd ACM SIGIR 1999 Conference on Research and Development in Information Retrieval, Berkeley, United States, August 15-19, pp. 230–237 (1999)Google Scholar
  4. 4.
    Wilson, C., Boe, B., Sala, A., Puttaswamy, K.P., Zhao, B.Y.: User interactions in Social Networks and their Implications. In: Proc. of 4th ACM European Conference on Computer Systems, EuroSys 2009, Nuremberg, Germany, April 01-03, pp. 205–218 (2009)Google Scholar
  5. 5.
    Pitsilis, G., Marshall, L.F.: Modeling Trust for Recommender Systems Using Similarity Metrics. In: Proc. IFIPTM, Trondheim, Norway, vol. 263, pp. 103–118. Springer, Heidelberg (2008)Google Scholar
  6. 6.
    Liu, H., Lim, E., Lauw, H.W., Le, M., Sun, A., Srivastava, J., Kim, Y.: Predicting Trusts among Users of Online Communities: An epinions case study. In: Proc. of 9th ACM Conference on Electronic Commerce, Chicago, Il, USA, July 08 - 12, pp. 310–319 (2008)Google Scholar
  7. 7.
    Kwon, Y.O.: Improving Top-N Recommendation Techniques Using Rating Variance. In: Proc. RecSys 2008, Lausanne, Switzerland, October 23-25. ACM, New York (2008)Google Scholar
  8. 8.
    Kim, T.-H., Yang, S.-B.: Using Attributes to Improve Prediction Quality in Collaborative Filtering. In: Bauknecht, K., Bichler, M., Pröll, B. (eds.) EC-Web 2004. LNCS, vol. 3182, pp. 1–10. Springer, Heidelberg (2004)Google Scholar
  9. 9.
    Truong, K., Ishukawa, F., Hodinen, S.: Improving the Accuracy of Recommender System by Item Clustering. IECE Trans. Inf. & Syst. E90-D(9) (2007)Google Scholar
  10. 10.
    Herlocker, J.L.: Evaluating Collaborative Filtering Recommender Systems. ACM Transactions on Information Systems 22(1), 5–53 (2004)CrossRefGoogle Scholar
  11. 11.
    A cooperative environment for the scientific research of trust metrics on social networks, (last accessed October 1, 2009)
  12. 12.
    Shardanand, U., Maes, P.: Social Information Filtering: Algorithms for automating “word of mouth”. In: Proc. ACM CHI’95 Conference on Human Factors in Computing Systems, pp. 210–217 (1995)Google Scholar
  13. 13.
    Melville, P., Mooney, R.L., Nagarajan, R.: Content-Boosted Collaborative Filtering for Improved Recommendations. In: Proc. of 18th National conf. of Artificial Intelligence, pp. 187–192 (2002)Google Scholar
  14. 14.
    Jøsang, A.: A Logic for Uncertain probabilities. International Journal of Uncertainty, Fuzziness & Knowledge Based Systems 9(3) (2001)Google Scholar
  15. 15.
    Levien, R.: Advogato’s trust metric, White Paper (2009),
  16. 16.
    Lathia, N., Hailes, S., Capra, L.: Trust-Based Collaborative Filtering. In: Karabulut, Y., Mitchell, J., Herman, P., Jensen, C.D. (eds.) IFIP, Trust Management II, Trondheim, Norway, vol. 263, pp. 87–102 (2008)Google Scholar
  17. 17.
    Truong, K., Ishukawa, F., Hodinen, S.: Improving the Accuracy of Recommender System by Item Clustering. IECE Trans. Inf. & Syst. E(90)-D.N(O9) (2007)Google Scholar
  18. 18.
    Sarwar, B.M., Karypis, G., Konstan, J.A., Riedl, J.T.: Application of Dimensionality Reduction in Recommender Systems–a case study. In: ACM WebKDD Workshop, Boston, USA (2000)Google Scholar
  19. 19.
    Geng, H., Deng, X., Ali, H.: A new Clustering Algorithm using Message Passing and its applications in Analyzing Microarray Data. In: Proc. of 4th ICMLA, December 15-17, pp. 145–150. IEEE, Washington (2005)Google Scholar
  20. 20.
    Melville, P., Mooney, R.J., Nagarajan, R.: Content-Boosted Collaborative Filtering for Improved Recommendations. In: Proc. of 18th National ACM Conf. of Artificial Intelligence, Alberta, Canada, July 28-August 01, pp. 187–192 (2002)Google Scholar
  21. 21.
    Massa, P., Avesani, P.: Controversial Users demand Local Trust Metrics: an Experimental Study on Community. In: Proc. of 20th National conf. AAAI 2005, pp. 121–126 (2005)Google Scholar
  22. 22.
    Boyd, D., Ellison, N.B.: Social network sites: Definition, History, and Scholarship. Journal of Computer-Mediated Communication 13(1) (2007)Google Scholar
  23. 23.
    O’Donovan, J., Smyth, B.: Trust No One: Evaluating Trust-based Filtering for Recommenders. In: Proc. of the 19th International Joint Conference on Artificial Intelligence IJCAI, Edinburgh, Scotland, pp. 1663–1665. Morgan Kaufmann Publishers, San Francisco (2005)Google Scholar

Copyright information

© IFIP 2010

Authors and Affiliations

  • Georgios Pitsilis
    • 1
  • Pern Hui Chia
    • 1
  1. 1.Q2S, NTNUTrondheimNorway

Personalised recommendations