Skip to main content

Xanthines as Adenosine Receptor Antagonists

  • Chapter
  • First Online:
Methylxanthines

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 200))

Abstract

The natural plant alkaloids caffeine and theophylline were the first adenosine receptor (AR) antagonists described in the literature. They exhibit micromolar affinities and are non-selective. A large number of derivatives and analogues were subsequently synthesized and evaluated as AR antagonists. Very potent antagonists have thus been developed with selectivity for each of the four AR subtypes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abo-Salem OM, Hayallah AM, Bilkei-Gorzo A, Filipek B, Zimmer A, Müller CE (2004) Antinociceptive effects of novel A2B adenosine receptor antagonists. J Pharmacol Exp Ther 308:358–366

    Article  PubMed  CAS  Google Scholar 

  • Alexander SP, Cooper J, Shine J, Hill SJ (1996) Characterization of the human brain putative A2B adenosine receptor expressed in Chinese hamster ovary (CHO.A2B4) cells. Br J Pharmacol 119:1286–1290

    Article  PubMed  CAS  Google Scholar 

  • Antoniou K, Daifoti-Papadopoulou Z, Hyphantis T, Papathanasiou G, Bekris E, Marselos M, Panlilio L, Müller CE, Goldberg SR, Ferré S (2005) A detailed behavioural analysis of the acute motor effects of caffeine in the rat: involvement of adenosine A1 and A2A receptors. Psychopharmacology 183:154–162

    Article  PubMed  CAS  Google Scholar 

  • Akkari R, Burbiel JC, Hockemeyer J, Müller CE (2006) Recent progress in the development of adenosine receptor ligands as antiinflammatory drugs. Curr Top Med Chem 6:1375–1399

    Article  PubMed  CAS  Google Scholar 

  • Auchampach JA, Jin X, Wan TC, Caughey GH, Linden J (1997) Canine mast cell adenosine receptors: cloning and expression of the A3 receptor and evidence that degranulation is mediated by the A2B receptor. Mol Pharmacol 52:846–860

    PubMed  CAS  Google Scholar 

  • Auchampach JA, Kreckler LM, Wan TC, Maas JE, van der Hoeven D, Gizewski E, Narayanan J, Maas GE (2009) Characterization of the A2B adenosine receptor from mouse, rabbit, and dog. J Pharm Exp Ther 329:2–13

    Article  CAS  Google Scholar 

  • Balo MC, Brea J, Caamano O, Fernandez F, Garcia-Mera X, Lopez C, Loza MI, Nieto MI, Rodriguez-Borges JE (2009) Synthesis and pharmacological evaluation of novel 1- and 8-substituted 3-furfurylxanthines as adenosine receptor antagonists. Bioorg Med Chem 17:6755–6760

    Article  PubMed  CAS  Google Scholar 

  • Baraldi PG, Tabrizi MA, Preti D, Bovero A, Romagnoli R, Fruttarolo F, Zaid NA, Moorman AR, Varani K, Gessi S, Merighi S, Borea PA (2004) Design, synthesis, and biological evaluation of new 8-heterocyclic xanthine derivatives as highly potent and selective human A2B adenosine receptor antagonists. J Med Chem 47:1434–1447

    Article  PubMed  CAS  Google Scholar 

  • Baraldi PG, Preti D, Tabrizi MA, Fruttarolo F, Romagnoli R, Zaid NA, Moorman AR, Merighi S, Varani K, Borea PA (2005) New pyrrolo[2,1-f]purine-2, 4-dione and imidazo[2,1-f]purine-2, 4-dione derivatives as potent and selective human A3 adenosine receptor antagonists. J Med Chem 48:4697–4701

    Article  PubMed  CAS  Google Scholar 

  • Baraldi PG, Tabrizi MA, Gessi S, Borea PA (2008) Adenosine receptor antagonists: translating medicinal chemistry and pharmacology into clinical utility. Chem Rev 108:238–263

    Article  PubMed  CAS  Google Scholar 

  • Barone S, Churchill PC, Jacobson KA (1989) Adenosine receptor prodrugs: towards kidney-selective dialkylxanthines. J Pharm Exp Ther 250:79–85

    CAS  Google Scholar 

  • Bauer A, Ishiwata K (2009) Adenosine receptor ligands and PET imaging of the CNS. Handb Exp Pharmacol 193:617–642

    Article  PubMed  CAS  Google Scholar 

  • Baumgold J, Nikodijevic O, Jacobson KA (1992) Penetration of adenosine antagonists into mouse brain as determined by ex vivo binding. Biochem Pharmacol 43:889–894

    Article  PubMed  CAS  Google Scholar 

  • Bertarelli DCG, Diekmann M, Hayallah AM, Rüsing D, Iqbal J, Preiss B, Verspohl EJ, Müller CE (2006) Characterization of human and rodent native and recombinant adenosine A2B receptors by radioligand binding studies. Purinergic Signal 2:559–571

    Article  PubMed  CAS  Google Scholar 

  • Bilkei-Gorzo A, Abo-Salem OM, Hayallah AM, Michel K, Müller CE, Zimmer A (2008) Adenosine receptor subtype-selective antagonists in inflammation and hyperalgesia. Naunyn Schmiedebergs Arch Pharmacol 377:65–76

    Article  PubMed  CAS  Google Scholar 

  • Blum D, Galas M-C, Pintor A, Brouillet E, Ledent C, Müller CE, Bantubungi K, Galluzzo M, Gall D, Cuvelier L, Rolland A-S, Popoli P, Schiffmann SN (2003) A dual role of adenosine A2A receptors in the modulation of 3-nitropropionic acid-induced striatal lesions: implications for the neuroprotective potential of A2A antagonists. J Neurosci 23:5361–5369

    PubMed  CAS  Google Scholar 

  • Boring DL, Ji XD, Zimmet J, Taylor KE, Stiles GL, Jacobson KA (1991) Trifunctional agents as a design strategy for tailoring ligand properties: Irreversible inhibitors of A1 adenosine receptors. Bioconjug Chem 2:77–88

    Article  PubMed  CAS  Google Scholar 

  • Borrmann T, Hinz S, Bertarelli DCG, Li W, Florin NC, Scheiff AB, Müller CE (2009) 1-Alkyl-8-(piperazine-1-sulfonyl)phenylxanthines: development and characterization of adenosine A2B receptor antagonists and a new radioligand with subnanomolar affinity and subtype specificity. J Med Chem 52:3994–4006

    Article  PubMed  CAS  Google Scholar 

  • Brackett LE, Daly JW (1994) Functional characterization of the A2b adenosine receptor in NIH 3T3 fibroblasts. Biochem Pharmacol 47:801–814

    Article  PubMed  CAS  Google Scholar 

  • Briddon SJ, Middleton RJ, Cordeaux Y, Flavin FM, Weinstein JA, George MW, Kellam B, Hill SJ (2004) Quantitative analysis of the formation and diffucion of A1-adenosine receptor-antagonist complexes in single living cells. Proc Natl Acad Sci USA 101:4673–4678

    Article  PubMed  CAS  Google Scholar 

  • Bridson PK, Lin X, Mleman N, Ji XD, Jacobson KA (1998) Synthesis and adenosine receptor affinity of 7-β-D-ribofuranosylxanthine. Nucleosides Nucleotides 17:759–768

    Article  PubMed  CAS  Google Scholar 

  • Brooks DJ, Doder M, Osman S, Luthra SK, Hirani E, Hume S, Kase H, Kilborn J, Martindill S, Mori A (2008) Positron emission tomography analysis of [11C]KW-6002 binding to human and rat adenosine A2A receptors in the brain. Synapse 62:671–681

    Article  PubMed  CAS  Google Scholar 

  • Bruns RF (1981) Adenosine antagonism by purines, pteridines and benzopteridines in human fibroblasts. Biochem Pharmacol 30:325–333

    Article  PubMed  CAS  Google Scholar 

  • Bruns RF, Daly JW, Snyder SH (1980) Adenosine receptors in brain membranes: binding of N6-cyclohexyl[3H]adenosine and 1,3-diethyl-8-[3H]phenylxanthine. Proc Natl Acad Sci USA 77:5547–5551

    Article  PubMed  CAS  Google Scholar 

  • Bruns RF, Lu GH, Pugsley TA (1986) Characterization of the A2 adenosine receptor labeled by [3H]NECA in rat striatal membranes. Mol Pharmacol 29:331–346

    PubMed  CAS  Google Scholar 

  • Bruns RF, Lu GH, Pugsley TA (1987a) In: Gerlach E, Becker BF (eds) Topics and perspectives in adenosine research. Springer, New York, pp 59–73

    Google Scholar 

  • Bruns RF, Fergus JH, Badger EW, Bristol JA, Santay LA, Hays SJ (1987b) PD 115, 199: an antagonist ligand for adenosine A2 receptors. Naunyn Schmiedebergs Arch Pharmacol 335:64–69

    Article  PubMed  CAS  Google Scholar 

  • Bruns RF, Fergus JH (1989) Solubilities of adenosine antagonists determined by radioreceptor assay. J Pharm Pharmacol 41:590–594

    Article  PubMed  CAS  Google Scholar 

  • Bulicz J, Bertarelli DCG, Baumert D, Fülle F, Müller CE, Heber D (2006) Synthesis and pharmacology of pyrido[2,3-d]pyrimidinediones bearing polar substituents as adenosine receptor antagonists. Bioorg Med Chem 14:2837–2849

    Article  PubMed  CAS  Google Scholar 

  • Burbiel J, Thorand M, Müller CE (2003) Improved efficient synthesis for multigram-scale production of PSB-10, a potent antagonist at human A3 adenosine receptors. Heterocycles 60:1425–1432

    Article  CAS  Google Scholar 

  • Cacciari B, Pastorin G, Spalluto G (2003) Medicinal chemistry of A2A adenosine receptor antagonists. Curr Top Med Chem 3:403–411

    Article  PubMed  CAS  Google Scholar 

  • Cagnina RE, Ramos SI, Marshall MA, Wang G, Frazier CR, Linden J (2009) Adenosine A2B receptors are highly expressed on murine type II alveolar epithelial cells. Am J Physiol Lung Cell Mol Physiol 297:L467–L474

    Article  PubMed  CAS  Google Scholar 

  • Carotti A, Cadavid MI, Centeno NB, Esteve C, Loza MI, Martinez A, NietoR RE, Sanz F, Segarra V, Sotelo E, Stefanachi A, Vidal B (2006) Design, synthesis, and structure-activity relationships of 1-, 3-, 8- and 9-substituted 9-deazaxanthines at the human A2B adenosine receptor. J Med Chem 49:282–299

    Article  PubMed  CAS  Google Scholar 

  • Carriba P, Ortiz O, Patkar K, Justinova Z, Stroik J, Themann A, Müller C, Woods AS, Hope BT, Ciruela F, Casado V, Canela EI, Lluis C, Goldberg SR, Moratalla R, Franco R, Ferré S (2007) Striatal adenosine A2A and cannabinoid CB1 receptors form functional heteromeric complexes that mediate the motor effects of cannabinoids. Neuropsychopharmacology 32:2249–2259

    Article  PubMed  CAS  Google Scholar 

  • Ceccarelli S, Altobelli M, D’Alessandro A, Paesano A (1995) A novel hydrophilic 8-cycloalkylxanthine derivative (IRFI 117) is a highly selective antagonist at A1 adenosine receptors. Res Commun Mol Pathol Pharmacol 87:101–102

    CAS  Google Scholar 

  • Cirillo R, Barone D, Franzone JS (1988) Doxofylline, an antiasthmatic drug lacking affinity for adenosine receptors. Arch Int Pharmacodyn Ther 295:221–237

    PubMed  CAS  Google Scholar 

  • Cohen BE, Lee G, Jacobson KA, Kim YC, Huang Z, Sorscher E, Pollard HB (1997) CPX (1,3-dipropyl-8-cyclopentylxanthine) and other alkyl-xanthines differentially bind to wild type and DF508 mutant first nucleotide binding fold (NBF-1) domains of the cystic fibrosis transmembrane conductance regulator. Biochemistry 36:6455–6461

    Article  PubMed  CAS  Google Scholar 

  • Cristalli G, Cacciari B, Dal Ben D, Lambertucci C, Moro S, Spalluto G, Volpini R (2007) Highlights on the development of A2A adenosine receptor agonists and antagonists. ChemMedChem 2:260–281

    Article  PubMed  CAS  Google Scholar 

  • Cristalli G, Müller CE, Volpini G (2009) Recent development in adenosine A2A receptor ligands. In: Wilson CN, Mustafa SJ (eds) Handbook of experimental pharmacology 193: adenosine receptors in health and disease, Springer Verlag, Berlin, pp 59–98

    Google Scholar 

  • Cunha GM, Canas PM, Melo CS, Hockemeyer J, Müller CE, Oliveira CR, Cunha RA (2008) Adenosine A2A receptor blockade prevents memory dysfunction caused by beta-amyloid peptides but not by scopolamine or MK-801. Exp Neurol 210:776–781

    Article  PubMed  CAS  Google Scholar 

  • Dall’Igna OP, Fett P, Gomes MW, Souza DO, Cunha RA, Lara DR (2007) Caffeine and adenosine A2A receptor antagonists prevent beta-amyloid (25-35)-induced cognitive deficits in mice. Exp Neurol 203:241–245

    Article  PubMed  CAS  Google Scholar 

  • Daly JW (1982) Adenosine receptors: targets for future drugs. J Med Chem 25:197–207

    Article  PubMed  CAS  Google Scholar 

  • Daly JW, Padgett W, Shamim MT, Butts-Lamb P, Waters J (1985) 1, 3-Dialkyl-8-(p-sulfophenyl)xanthines: potent water-soluble antagonists for A1- and A2-adenosine receptors. J Med Chem 28:487–492

    Article  PubMed  CAS  Google Scholar 

  • Daly JW, Padgett WL, Shamim MT (1986a) Analogues of caffeine and theophylline: effect of structural alterations on affinity at adenosine receptors. J Med Chem 29:1305–1308

    Article  PubMed  CAS  Google Scholar 

  • Daly JW, Padgett WL, Shamim MT (1986b) Analogues of 1,3-dipropyl-8-phenylxanthine: enhancement of selectivity at A1-adenosine receptors by aryl substituents. J Med Chem 29:1520–1524

    Article  PubMed  CAS  Google Scholar 

  • Daly JW, Hide I, Müller CE, Shamim M (1991) Caffeine analogs: structure-activity relationships at adenosine receptors. Pharmacology 42:309–321

    Article  PubMed  CAS  Google Scholar 

  • Daly JW (1991) Analogs of caffeine and theophylline: activity as antagonists at adenosine receptors. In: Imai S, Nakazawa M (eds) Role of adenosine and adenine nucleotides in the biological system. Amsterdam, Elsevier, pp 119–129

    Google Scholar 

  • Daly JW, Jacobson KA (1995) Adenosine and adenine nucleotides: from molecular biology to integrative physiology. Kluwer, Boston, 155

    Google Scholar 

  • Daly JW (2000) Alkylxanthines as research tools. J Auton Nerv Syst 81:44–52

    Article  PubMed  CAS  Google Scholar 

  • Daly JW (2007) Caffeine analogs: biomedical impact. Cell Mol Life Sci 64:2153–2169

    Article  PubMed  CAS  Google Scholar 

  • Del Giudice MR, Borioni A, Mustazza C, Gatta F, Dionisotti S, Zocchi C, Ongini E (1996) (E)-1-(Heterocyclyl or cyclohexyl)-2-[1,3,7-trisubstituted(xanthin-8-yl)]ethenes as adenosine A2A receptors antagonists. Eur J Med Chem 31:59–63

    Article  Google Scholar 

  • Doggrell SA (2005) BG-9928 (Biogen Idec). Curr Opin Investig Drugs 6:962–968

    PubMed  CAS  Google Scholar 

  • Drabczynska A, Schumacher B, Müller CE, Karolak-Wojciechowska J, Michalak B, Pekala E, Kiec-Kononowicz K (2003) Impact of the aryl substituent kind and distance from pyrimido[2,1-f]purindiones on the adenosine receptor selectivity and antagonistic properties. Eur J Med Chem 38:397–402

    Article  PubMed  CAS  Google Scholar 

  • Drabczynska A, Müller CE, Schumacher B, Hinz S, Karolak-Wojciechowska J, Michalak B, Pekala E, Kiec-Kononowicz K (2004) Tricyclic oxazolo[2,3-f]purinediones: potency as adenosine receptor ligands and anticonvulsants. Bioorg Med Chem 12:4895–4908

    Article  PubMed  CAS  Google Scholar 

  • Drabczynska A, Müller CE, Lacher SK, Schumacher B, Karolak-Wojciechowska J, Nasal A, Kawczak P, Yuzlenko O, Pekala E, Kiec-Kononowicz K (2006) Synthesis and biological activity of tricyclic aryloimidazo-, pyrimido-, and diazepinopurinediones. Bioorg Med Chem 14:7258–7281

    Article  PubMed  CAS  Google Scholar 

  • Drabczynska A, Müller CE, Karolak-Wojciechowska J, Schumacher B, Schiedel A, Yuzlenko O, Kiec-Kononowicz K (2007a) N9-Benzyl-substituted 1,3-dimethyl- and 1,3-dipropyl-pyrimido-[2,1-f]purinediones: synthesis and structure-activity relationships at adenosine A1 and A2A receptors. Bioorg Med Chem 15:5003–5017

    Article  PubMed  CAS  Google Scholar 

  • Drabczynska A, Müller CE, Schiedel A, Schumacher B, Karolak-Wojciechowska J, Fruzinski A, Zobnina W, Yuzlenko O, Kiec-Kononowicz K (2007b) Phenylethyl-substituted pyrimido[2,1-f]purinediones and related compounds: structure-activity relationships as adenosine A1 and A2A receptor ligands. Bioorg Med Chem 15:6956–6974

    Article  PubMed  CAS  Google Scholar 

  • Elzein E, Kalla RV, Li X, Perry T, Gimbel A, Zeng D, Lustig D, Leung K, Zablocki J (2008) Discovery of a novel A2B adenosine receptor antagonist as a clinical candidate for chronic inflammatory airway diseases. J Med Chem 51:2267–2278

    Article  PubMed  CAS  Google Scholar 

  • Erickson RH, Hiner RN, Feeney SW, Blake PR, Rzeszotarski WJ, Hicks RP, Costello DG, Abreu ME (1991) 1,3,8-Trisubstituted xanthines. Effects of substitution pattern upon adenosine receptor A1/A2 affinity. J Med Chem 34:1431–1435

    Article  PubMed  CAS  Google Scholar 

  • Esteve C, Nueda JL, Beleta J, Cardenas A, Lozoya E, Cadavid MI, Loza MI, Ryder H, Vidal B (2006) New pyrrolopyrimidin-6-ylbenzyenesulfonamides: potent A2B adenosine receptor antagonists. Bioorg Med Chem Lett 16:3642–3645

    Article  PubMed  CAS  Google Scholar 

  • Farrar AM, Pereira M, Velasco F, Hockemeyer J, Müller CE, Salamone J (2007) Adenosine A2A receptor antagonism reverses the effects of dopamine receptor antagonism on instrumental output and effort-related choice in the rat: implications for studies of psychomotor slowing. Psychopharmacology 191:579–586

    Article  PubMed  CAS  Google Scholar 

  • Ferkany JW, Valentine HL, Stone GA, Williams M (1986) Adenosine A1 receptors in mammalian brain: species differences in their interactions with agonists and antagonists. Drug Dev Res 9:85–93

    Article  CAS  Google Scholar 

  • Fernandez HH, Greeley DR, Zweig RM, Wojcieszek J, Mori A, Sussman NM, 6002-US-051 Study Group (2010) Istradefylline as monotherapy for Parkinson disease: results of the 6002-US-051 trial. Parkinsonism Relat Disord 16:16–20

    Article  PubMed  CAS  Google Scholar 

  • Ferré S, Popoli P, Giménez-Llort L, Rimondini R, Müller CE, Strömberg I, Ögren SO, Fuxe K (2001) Adenosine/dopamine interaction: implication for the treatment of Parkinson’s disease. Parkinsonism Relat Disord 7:235–241

    Article  PubMed  Google Scholar 

  • Ferré S, Ciruela F, Borycz J, Solinas M, Quarta D, Antoniou K, Quiroz C, Justinova Z, Lluis C, Franco R, Goldberg SR (2008) Adenosine A1–A2A receptor heteromers: new targets for caffeine in the brain. Front Biosci 13:2391–2399

    Article  PubMed  Google Scholar 

  • Fhid O, Pawlowski M, Jurczyk S, Müller CE, Schumacher B (2003) Pyridin-8-on[2,1-f]theophylline-9-alkylcarboxylic acid amides as A1 and A2A adenosine receptor ligands. Farmaco 58:439–444

    Article  PubMed  CAS  Google Scholar 

  • Filip M, Frankowska M, Zaniewska M, Przegalinski E, Müller CE, Agnati LF, Franco R, Roberts DCS, Fuxe K (2006) Involvement of adenosine A2A and dopamine receptors in the locomotor and sensitizing effects of cocaine. Brain Res 1077:67–80

    Article  PubMed  CAS  Google Scholar 

  • Fozard JR, Baur F, Wolber C (2003) Antagonist pharmacology of adenosine A2B receptors from rat, guinea pig and dog. Eur J Pharmacol 475:79–84

    Article  PubMed  CAS  Google Scholar 

  • Franchetti P, Messini L, Cappellacci L, Grifantini M, Lucacchini A, Martini C, Senatore G (1994) 8-Azaxanthine derivatives as antagonists of adenosine receptors. J Med Chem 37:2970–2975

    Article  PubMed  CAS  Google Scholar 

  • Frédérick R, Ooms F, Castagnoli N Jr, Petzer JP, Feng JF, Schwarzschild MA, Van der Schyf CJ, Wouters J (2005) (E)-8-(3-Chlorostyryl)-1,3,7-trimethylxanthine, a caffeine derivative acting both as antagonist of adenosine A2A receptors and as inhibitor of MAO-B. Acta Crystallogr C61:o531–o532

    Google Scholar 

  • Fredholm BB, Abbracchio MP, Burnstock G, Daly JW, Harden KT, Jacobson KA, Leff P, Williams M (1994) Nomenclature and classification of purinoceptors: a report from the IUPHAR subcommittee. Pharmacol Rev 46:143–156

    PubMed  CAS  Google Scholar 

  • Fredholm BB, Bättig K, Holmén J, Nehlig A, Zvartau EE (1999) Actions of caffeine in the brain with special reference to factors that contribute to its widespread use. Pharmacol Rev 51:83–133

    PubMed  CAS  Google Scholar 

  • Fredholm BB, Jacobson KA (2009) John W. Daly and the early characterization of adenosine receptors. Heterocycles 79:73–83

    Article  CAS  Google Scholar 

  • Fuxe K, Marcellino D, Genedani S, Agnati L (2007) Adenosine A2A receptors, dopamine D2 receptors and their interactions in Parkinson’s disease. Mov Disord 22:1990–2017

    Article  PubMed  Google Scholar 

  • Gao ZG, Kim SK, Biadatti T, Chen W, Lee K, Barak D, Kim SG, Johnson CR, Jacobson KA (2002) Structural determinants of A3 adenosine receptor activation: nucleoside ligands at the agonist/antagonist boundary. J Med Chem 45:4471–4484

    Article  PubMed  CAS  Google Scholar 

  • Geis U, Grahner B, Pawlowski M, Drabczynska A, Gorczyca M, Müller CE (1995) Tricyclic theophylline derivatives with high water-solubility: structure-activity relationships at adenosine receptors, phosphodiesterases and benzodiazepine binding sites. Pharmazie 50:333–336

    PubMed  CAS  Google Scholar 

  • Givertz MM (2009) Adenosine A1 receptor antagonists at a fork in the road. Circ Heart Fail 2:519–522

    Article  PubMed  Google Scholar 

  • Grahner B, Winiwarter S, Lanzner W, Müller CE (1994) Synthesis and structure-activity relationships of deazaxanthines: analogs of potent A1- and A2-adenosine receptor antagonists. J Med Chem 37:1526–1534

    Article  PubMed  CAS  Google Scholar 

  • Hayallah AM, Sandoval-Ramírez J, Reith U, Schobert U, Preiss B, Schumacher B, Daly JW, Müller CE (2002) 1, 8-Disubstituted xanthine derivatives: synthesis of potent A2B-selective adenosine receptor antagonists. J Med Chem 45:1500–1510

    Article  PubMed  CAS  Google Scholar 

  • Hauber W, Nagel J, Sauer R, Müller CE (1998) Motor effects induced by a blockade of adenosine A2A receptors in the caudate-putamen. Neuroreport 9:1803–1806

    Article  PubMed  CAS  Google Scholar 

  • Hauber W, Neuscheler P, Nagel J, Müller CE (2001) Catalepsy induced by a blockade of dopamine D1 or D2 receptors was reversed by a concomitant blockade of A2A receptors in the caudate-putamen of rats. Eur J Neurosci 14:1287–1293

    Article  PubMed  CAS  Google Scholar 

  • Hirani E, Gillies J, Karasawa A, Shimada J, Kase H, Opacka-Juffry J, Osman S, Luthra SK, Hume SP, Brooks DJ (2001) Evaluation of [4-O-methyl-11C]KW-6002 as a potential PET ligand for mapping central adenosine A2A receptors in rats. Synapse 42:164–176

    Article  PubMed  CAS  Google Scholar 

  • Hockemeyer J, Burbiel JC, Müller CE (2004) Multigram-scale syntheses, stability, and photoreactions of A2A adenosine receptor antagonists with 8-styrylxanthine structure: potential drugs for Parkinson’s disease. J Org Chem 69:3308–3318

    Article  PubMed  CAS  Google Scholar 

  • Holschbach MH, Olsson RA, Bier D, Wutz W, Sihver W, Schüller M, Palm B, Coenen HH (2002) Synthesis and evaluation of no-carrier-added 8-cyclopentyl-3-(3-[18F]fluoropropyl)-1-propylxanthine ([18F]CPFPX): a potent and selective A1-adenosine receptor antagonist for in vivo imaging. J Med Chem 45:5150–5156

    Article  PubMed  CAS  Google Scholar 

  • Ilas J, Pekar S, Hockemeyer J, Euler H, Kirfel A, Müller CE (2005) Development of spin-labeled probes for adenosine receptors. J Med Chem 48:2108–2114

    Article  PubMed  CAS  Google Scholar 

  • Ishiwari K, Madson LJ, Farrar AM, Mingote SM, Valenta JP, DiGianvittorio MD, Frank LE, Correa M, Hockemeyer J, Müller CE, Salamone JD (2007) Injections of the selective adenosine A2A antagonist MSX-3 into the nucleus accumbens core attenuate the locomotor suppression induced by haloperidol in rats. Behav Brain Res 178:190–199

    Article  PubMed  CAS  Google Scholar 

  • Ishiwata K, Noguchi J, Toyama H, Sakiyama Y, Koike N, Ishii S, Oda K, Endo K, Suzuki F, Senda M (1996) Synthesis and preliminary evaluation of [11C]KF17837, a selective adenosine A2A antagonist. Appl Radiat Isot 47:507–511

    Article  PubMed  CAS  Google Scholar 

  • Ishiwata K, Sakiyama Y, Sakiyama T, Shimada J, Toyama H, Oda K, Suzuki F, Senda M (1997) Myocardial adenosine A2A receptor imaging of rabbit by PET with [11C]KF17837. Ann Nucl Med 11:219–225

    Article  PubMed  CAS  Google Scholar 

  • Ishiwata K, Noguchi J, Wakabayashi S, Shimada J, Ogi N, Nariai T, Tanaka A, Endo K, Suzuki F, Senda M (2000a) 11C-labeled KF18446: a potential central nervous system adenosine A2A receptor ligand. J Nucl Med 41:345–354

    PubMed  CAS  Google Scholar 

  • Ishiwata K, Ogi N, Shimada J, Nonaka H, Tanaka A, Suzuki F, Senda M (2000b) Further characterization of a CNS adenosine A2A receptor ligand [11C]KF18446 with in vitro autoradiography and in vivo tissue uptake. Ann Nucl Med 14:81–89

    Article  PubMed  CAS  Google Scholar 

  • Ishiwata K, Shimada J, Wang WF, Harakawa H, Ishii S, Kiyosawa M, Suzuki F, Senda M (2000c) Evaluation of iodinated and brominated [11C]styrylxanthine derivatives as in vivo radioligands mapping adenosine A2A receptor in the central nervous system. Ann Nucl Med 14:247–253

    Article  PubMed  CAS  Google Scholar 

  • Ishiwata K, Ogi N, Hayakawa N, Oda K, Nagaoka T, Toyama H, Suzuki F, Endo K, Tanaka A, Senda M (2002) Adenosine A2A receptor imaging with [11C]KF18446 PET in the rat brain after quinolinic acid lesion: comparison with the dopamine receptor imaging. Ann Nucl Med 16:467–475

    Article  PubMed  CAS  Google Scholar 

  • Ishiwata K, Kawamura K, Kimura Y, Oda K, Ishii K (2003a) Potential of an adenosine A2A receptor antagonist [11C]TMSX for myocardial imaging by positron emission tomography: a first human study. Ann Nucl Med 17:457–462

    Article  PubMed  CAS  Google Scholar 

  • Ishiwata K, Wang WF, Kimura Y, Kawamura K, Ishii K (2003b) Preclinical studies on [11C]TMSX for mapping adenosine A2A receptors by positron emission tomography. Ann Nucl Med 17:205–211

    Article  PubMed  CAS  Google Scholar 

  • Ishiyama H, Nakajima H, Nakata H, Kobayashi J (2009) Synthesis of hybrid analogues of caffeine and eudistomin D and their affinity for adenosine receptors. Bioorg Med Chem 17:4280–4284

    Article  PubMed  CAS  Google Scholar 

  • Jacobson KA, Kirk KL, Padgett W, Daly JW (1985a) Probing the adenosine receptor with adenosine and xanthine biotin conjugates. FEBS Lett 184:30–35

    Article  PubMed  CAS  Google Scholar 

  • Jacobson KA, Kirk KL, Padgett WL, Daly JW (1985b) Functionalized congeners of 1,3-dialkylxanthines: preparation of analogues with high affinity for adenosine receptors. J Med Chem 28:1334–1340

    Article  PubMed  CAS  Google Scholar 

  • Jacobson KA, Ukena D, Kirk KL, Daly JW (1986a) [3H]Xanthine amine congener of 1,3-dipropyl-8-phenylxanthine: an antagonist radioligand for adenosine receptors. Proc Natl Acad Sci USA 83:4089–4093

    Article  PubMed  CAS  Google Scholar 

  • Jacobson KA, Kirk KL, Padgett WL, Daly JW (1986b) A functionalized congener approach to adenosine receptor antagonists: amino acid conjugates of 1,3-dipropylxanthine. Mol Pharmacol 29:126–133

    PubMed  CAS  Google Scholar 

  • Jacobson KA, Ukena D, Padgett W, Daly JW, Kirk KL (1987a) Xanthine functionalized congeners as potent ligands at A2-adenosine receptors. J Med Chem 30:211–214

    Article  PubMed  CAS  Google Scholar 

  • Jacobson KA, Ukena D, Padgett W, Kirk KL, Daly JW (1987b) Molecular probes for extracellular adenosine receptors. Biochem Pharmacol 36:1697–1707

    Article  PubMed  CAS  Google Scholar 

  • Jacobson KA, Lipowski AW, Moody TW, Padgett W, Pijl E, Kirk KL, Daly JW (1987c) Binary drugs: conjugates of purines and a peptide that bind to both adenosine and substance P receptors. J Med Chem 30:1529–1532

    Article  PubMed  CAS  Google Scholar 

  • Jacobson KA, de la Cruz R, Schulick R, Kiriasis L, Padgett W, Pfleiderer W, Kirk KL, Neumeyer JL, Daly JW (1988) 8-Substituted xanthines as antagonists as A1 and A2-adenosine receptors. Biochem Pharmacol 37:3653–3661

    Article  PubMed  CAS  Google Scholar 

  • Jacobson KA, Barone S, Kammula U, Stiles GL (1989a) Electrophilic derivatives of purines as irreversible inhibitors of A1-adenosine receptors. J Med Chem 32:1043–1051

    Article  PubMed  CAS  Google Scholar 

  • Jacobson KA, Kiriasis L, Barone S, Bradbury BJ, Kammula U, Campagne JM, Daly JW, Neumeyer JL, Pfleiderer W (1989b) Sulfur-containing xanthine derivatives as selective antagonists at A1-adenosine receptors. J Med Chem 32:1873–1879

    Article  PubMed  CAS  Google Scholar 

  • Jacobson KA (1990) Probing adenosine receptors using biotinylated purine conjugates. Methods Enzymol 184:668–671

    Google Scholar 

  • Jacobson KA, van Galen PJM, Williams M (1992a) Perspective, adenosine receptors: pharmacology, structure activity relationships and therapeutic potential. J Med Chem 35:407–422

    Article  PubMed  CAS  Google Scholar 

  • Jacobson KA, Olah ME, Stiles GL (1992b) Trifunctional ligands: a radioiodinated high affinity acylating antagonist for the A1 adenosine receptor. Pharmacol Commun 1:145–154

    Google Scholar 

  • Jacobson KA, Gallo-Rodriguez C, Melman N, Fischer B, Maillard M, van Bergen A, van Galen PJ, Karton Y (1993a) Structure-activity relationships of 8-styrylxanthines as A2-selective adenosine antagonists. J Med Chem 36:1333–1342

    Article  PubMed  CAS  Google Scholar 

  • Jacobson KA, Shi D, Gallo-Rodriguez C, Manning M Jr, Müller C, Daly JW, Neumeyer JL, Kiriasis L, Pfleiderer W (1993b) Effect of trifluoromethyl and other substituents on activity of xanthines at adenosine receptors. J Med Chem 36:2639–2644

    Article  PubMed  CAS  Google Scholar 

  • Jacobson KA, Fischer B, Ji XD (1995) A “cleavable trifunctional” approach to receptor affinity labeling: regeneration of binding to A1-adenosine receptors. Bioconjug Chem 6:255–263

    Article  PubMed  CAS  Google Scholar 

  • Jacobson KA (1998) A3 adenosine receptors: novel ligands and paradoxical effects. Trends Pharmacol Sci 19:184–191

    Article  PubMed  CAS  Google Scholar 

  • Jacobson KA, IJzerman AP, Linden J (1999) 1,3-Dialkylxanthine derivatives having high potency as antagonists at human A2B adenosine receptors. Drug Devel Res 47:45–53

    Article  CAS  Google Scholar 

  • Jacobson KA, Gao ZG (2006) Adenosine receptors as therapeutic targets. Nat Rev Drug Discov 5:247–264

    Article  PubMed  CAS  Google Scholar 

  • Jacobson KA (2009) Functionalized congener approach to the design of ligands for G protein-coupled receptors (GPCRs). Bioconjug Chem 20:1816–1835

    Article  PubMed  CAS  Google Scholar 

  • Jarvis MF, Jacobson KA, Williams M (1987) Autoradiographic localization of adenosine A1 receptors in rat brain using [3H]XCC, a functionalized congener of 1,3-dipropylxanthine. Neurosci Lett 81:69–74

    Article  PubMed  CAS  Google Scholar 

  • Ji XD, Stiles GL, Jacobson KA (1991) [3H]XAC (xanthine amine congener) is a radioligand for A2-adenosine receptors in rabbit striatum. Neurochem Int 18:207–213

    Article  PubMed  CAS  Google Scholar 

  • Ji XD, Gallo-Rodriguez C, Jacobson KA (1993) 8-(3-Isothiocyanatostyryl)caffeine is a selective irreversible inhibitor or striatal A2-adenosine receptors. Drug Dev Res 29:292–298

    Article  PubMed  CAS  Google Scholar 

  • Ji XD, von Lubitz D, Olah ME, Stiles GL, Jacobson KA (1994) Species differences in ligand affinity at central A3-adenosine receptors. Drug Dev Res 33:51–59

    Article  CAS  Google Scholar 

  • Ji XD, Kim YC, Ahern DG, Linden J, Jacobson KA (2001) [3H]MRS 1754, a selective antagonist radioligand for A2B adenosine receptors. Biochem Pharmacol 61:657–663

    Article  PubMed  CAS  Google Scholar 

  • Kalla R, Elzein E, Perry T, Li X, Gimbel A, Yang M, Zeng D, Zablocki J (2008) Selective, high affinity A2B adenosine receptor antagonists: N-1 monosubstituted 8-(pyrazol-4-yl)xanthines. Bioorg Med Chem Lett 18:1397–1401

    Article  PubMed  CAS  Google Scholar 

  • Kalla R, Zablocki J (2009) Progress in the discovery of selective, high affinity A2B adenosine receptor antagonists as clinical candidates. Purinergic Signal 5:21–29

    Article  PubMed  CAS  Google Scholar 

  • Karcz-Kubicha M, Quarta D, Hope BT, Antoniou K, Müller CE, Morales M, Schindler CW, Goldberg SR, Ferré S (2003a) Enabling role of adenosine A1 receptors in adenosine A2A receptor-mediated striatal expression of c-fos. Eur J Neurosci 18:296–302

    Article  PubMed  Google Scholar 

  • Karcz-Kubicha M, Antoniou K, Terasmaa A, Quarta D, Solinas M, Justinova Z, Pezzola A, Reggio R, Müller CE, Fuxe K, Goldberg SR, Popoli P, Ferré S (2003b) Involvement of adenosine A1 and A2A receptors in the motor effects of caffeine after its acute and chronic administration. Neuropsychopharmacology 28:1281–1291

    Article  PubMed  CAS  Google Scholar 

  • Kase H (2003) The adenosine A2A receptor selective antagonist KW6002: research toward a novel nondopaminergic therapy for Parkinson’s disease. Neurology 61(Suppl 6):S97–S100

    Article  PubMed  CAS  Google Scholar 

  • Kiec-Kononowicz K, Drabczynska A, Pekala E, Michalak B, Müller CE, Schumacher B, Karolak-Wojciechowska J, Duddeck H, Rockitt S, Wartchow R (2001) New developments in A1 and A2 adenosine receptor antagonists. Pure Appl Chem 73:1411–1420

    Article  CAS  Google Scholar 

  • Kiesman WF, Zhao J, Conlon PR, Petter RC, Jin X, Smits G, Lutterodt F, Sullivan GW, Linden J (2006a) Norbornyllactone-substituted xanthines as adenosine A1 receptor antagonists. Bioorg Med Chem 14:3654–3661

    Article  PubMed  CAS  Google Scholar 

  • Kiesman WF, Zhao J, Conlon PR, Dowling JE, Petter RC, Lutterodt F, Jin X, Smits G, Fure M, Jayaraj A, Kim J, Sullivan G, Linden J (2006b) Potent and orally bioavailable 8-bicyclo[2.2.2]octylxanthines as adenosine A1 receptor antagonists. J Med Chem 49:7119–7131

    Article  PubMed  CAS  Google Scholar 

  • Kim HO, Ji XD, Melman N, Olah ME, Stiles GL, Jacobson KA (1994a) Structure activity relationships of 1,3-dialkylxanthine derivatives at rat A3-adenosine receptors. J Med Chem 37:3373–3382

    Article  PubMed  CAS  Google Scholar 

  • Kim HO, Ji XD, Melman N, Olah ME, Stiles GL, Jacobson KA (1994b) Selective ligands for rat A3-adenosine receptors: structure-activity relationships of 1,3-dialkylxanthine-7-riboside derivatives. J Med Chem 37:4020–4030

    Article  PubMed  CAS  Google Scholar 

  • Kim YC, Karton Y, Ji XD, Melman N, Linden J, Jacobson KA (1999) Acyl-hydrazide derivatives of a xanthine carboxylic congener (XCC) as selective antagonists at human A2B adenosine receptors. Drug Dev Res 47:178–188

    Article  CAS  Google Scholar 

  • Kim Y-S, Ji X, Melman N, Linden J, Jacobson KA (2000) Anilide derivatives of an 8-phenylxanthine carboxylic congener are highly potent and selective antagonists at human A2B adenosine receptors. J Med Chem 43:1165–1172

    Article  PubMed  CAS  Google Scholar 

  • Kim S-A, Marschall MA, Melman N, Kim HS, Müller CE, Linden J, Jacobson KA (2002) Structure-activity relationships at human and rat A2B adenosine receptors of xanthine derivatives substituted at the 1-, 3-, 7-, and 8-positions. J Med Chem 45:2131–2138

    Article  PubMed  CAS  Google Scholar 

  • Kirfel A, Schwabenländer F, Müller CE (1997) Crystal structure of 1-propyl-8-(4-sulfophenyl)-7H-imidazo[4,5-d]pyrimidin-2,6(1H,3H)-dione dehydrate, C14H14N4O5S×2 H2O. Z Kristallogr New Cryst Struct 3:447–448

    Google Scholar 

  • Klotz KN, Vogt H, Tawfik-Schlieper H (1991) Comparison of adenosine receptors in brain from different species by radioligand binding and photoaffinity labelling. Naunyn Schmiedebergs Arch Pharmacol 343:196–201

    Article  PubMed  CAS  Google Scholar 

  • Klotz KN, Hessling J, Hegler J, Owman C, Kull B, Fredholm BB, Lohse MJ (1998) Comparative pharmacology of human adenosine receptor subtypes - characterization of stably transfected receptors in CHO cells. Naunyn Schmiedebergs Arch Pharmacol 357:1–9

    Article  PubMed  CAS  Google Scholar 

  • Knutsen LJ, Weiss SM (2001) KW-6002 (Kyowa Hakko Kogyo). Curr Opin Investig Drugs 2:668–673

    PubMed  CAS  Google Scholar 

  • Krämer SD, Testa B (2008) The biochemistry of drug metabolism – an introduction part 6. Inter-individual factors affecting drug metabolism. Chem Biodivers 5:2465–2578

    Article  PubMed  Google Scholar 

  • Kull B, Arslan G, Nilsson C, Owman C, Lorenzen A, Schwabe U, Fredholm BB (1999) Differences in the order of potency for agonists but not antagonists at human and rat adenosine A2A receptors. Biochem Pharmacol 57:65–75

    Article  PubMed  CAS  Google Scholar 

  • Linden J (1994) Cloned adenosine A3 receptors: pharmacological properties, species differences and receptor functions. Trends Pharmacol Sci 15:298–306

    Article  PubMed  CAS  Google Scholar 

  • Linden J, Taylor HE, Robeva AS, Tucker AL, Stehle JH, Rivkees SA, Fink JS, Reppert SM (1993) Molecular cloning and functional expression of a sheep A3 adenosine receptor with widespread tissue distribution. Mol Pharmacol 44:524–532

    PubMed  CAS  Google Scholar 

  • Linden J, Thai T, Figler H, Jin X, Robeva AS (1999) Characterization of human A2B adenosine receptors: radioligand binding, western blotting, and coupling to Gq in human embryonic kidney 293 cells and HMC-1 mast cells. Mol Pharmacol 56:705–713

    PubMed  CAS  Google Scholar 

  • Marcellino D, Carriba P, Filip M, Borgkvist A, Frankowska M, Bellido I, Tanganelli S, Müller CE, Fisone G, Lluis C, Agnati LF, Franco R, Fuxe K (2008) Antagonistic cannabinoid CB1/dopamine D2 receptor interactions in striatal CB1/D2 heteromers. A combined neurochemical and behavioural analysis. Neuropharmacology 54:815–823

    Article  PubMed  CAS  Google Scholar 

  • Marian T, Boros I, Lengyel Z, Balkay L, Horvath G, Emri M, Sarkadi E, Szentmiklosi AJ, Fekete I, Tron L (1999) Preparation and primary evaluation of [11C]CSC as a possible tracer for mapping adenosine A2A receptors by PET. Appl Radiat Isot 50:887–893

    Article  PubMed  CAS  Google Scholar 

  • Martin PL, Wysocki RJ Jr, Barrett RJ, May JM, Linden J (1996) Characterization of 8-(N-methylisopropyl)amino-N6-(5′-endohydroxy-endonorbornyl)-9-methyladenine (WRC-0571), a highly potent and selective, non-xanthine antagonist of A1 adenosine receptors. J Pharmacol Exp Ther 276:490–499

    PubMed  CAS  Google Scholar 

  • Massip S, Guillon J, Bertarelli D, Bosc JJ, Leger JM, Lacher S, Bontemps C, Dupont T, Müller CE, Jarry C (2006) Synthesis and preliminary evaluation of new 1- and 3-[1-(2-hydroxy-3-phenoxypropyl)]xanthines from 2-amino-2-oxazolines as potential A1 and A2A adenosine receptor antagonists. Bioorg Med Chem 14:2697–2719

    Article  PubMed  CAS  Google Scholar 

  • Michael S, Warstat C, Michel F, Yan L, Müller CE, Nieber K (2010) Adenosine A2A agonist and A2B antagonist mediate an inhibition of inflammation-induced contractile disturbance of a rat gastrointestinal preparation. Purinergic Signal 6:117–124

    Google Scholar 

  • Mishina M, Ishiwata K, Kimura Y, Naganawa M, Oda K, Kobayashi S, Katayama Y, Ishii K (2007) Evaluation of distribution of adenosine A2A receptors in normal human brain measured with [11C]TMSX PET. Synapse 61:778–784

    Article  PubMed  CAS  Google Scholar 

  • Moro S, Gao ZG, Jacobson KA, Spalluto G (2006) Progress in the pursuit of therapeutic adenosine receptor antagonists. Med Res Rev 26:131–159

    Article  PubMed  CAS  Google Scholar 

  • Mott AM, Nunes EJ, Collins LE, Port RG, Sink KS, Hockemeyer J, Müller CE, Salamone JD (2009) The adenosine A2A antagonist MSX-3 reverses the effects of the dopamine antagonist haloperidol on effort-related decision making in a T-maze cost/benefit procedure. Psychopharmacology 204:103–112

    Article  PubMed  CAS  Google Scholar 

  • Müller CE (1994) Formation of oxazolo[3,2-a]purinones from propynyluracils. J Org Chem 59:1928–1929

    Article  Google Scholar 

  • Müller CE (1997) A1-adenosine receptor antagonists. Expert Opin Ther Patents 7:419–440

    Article  Google Scholar 

  • Müller CE (2000) A2A adenosine receptor antagonists - future drugs for Parkinson’s disease? Drugs Future 25:1043–1052

    Article  Google Scholar 

  • Müller CE (2001) A3 adenosine receptor antagonists. Mini-Rev Med Chem 1:417–427

    Article  PubMed  Google Scholar 

  • Müller CE (2003) Medicinal chemistry of adenosine A3 receptor ligands. Curr Top Med Chem 3:445–462

    Article  PubMed  Google Scholar 

  • Müller CE (2009) Prodrug approaches for enhancing the bioavailability of drugs with low solubility. Chem Biodivers 6:2071–2083

    Article  PubMed  CAS  Google Scholar 

  • Müller CE, Scior T (1993) Adenosine receptors and their modulators. Pharm Acta Helv 68:77–111

    Article  PubMed  Google Scholar 

  • Müller CE, Shi D, Manning M Jr, Daly JW (1993) Synthesis of paraxanthine analogs (1,7-disubstituted xanthines) and other xanthines unsubstituted at the 3-position: structure-activity relationships at adenosine receptors. J Med Chem 36:3341–3349

    Article  PubMed  Google Scholar 

  • Müller CE, Stein B (1996) Adenosine receptor antagonists: structures and potential therapeutic applications. Curr Pharm Des 2:501–530

    Google Scholar 

  • Müller CE, Geis U, Hipp J, Schobert U, Frobenius W, Pawlowski M, Suzuki F, Sandoval-Ramirez J (1997a) Synthesis and structure-activity relationships of DMPX (3,7-dimethyl-1-propargylxanthine) derivatives, A2A-selective adenosine receptor antagonists. J Med Chem 40:4396–4405

    Article  PubMed  Google Scholar 

  • Müller CE, Sauer R, Geis U, Frobenius W, Talik P, Pawlowski M (1997b) Aza-analogs of 8-styrylxanthines as A2A-adenosine receptor antagonists. Arch Pharm Pharm Med Chem 330:181–189

    Article  Google Scholar 

  • Müller CE, Schobert U, Hipp J, Geis U, Frobenius W, Pawlowski M (1997c) Configurationally stable analogs of styrylxanthines as A2A adenosine receptor antagonist. Eur J Med Chem 32:709–719

    Article  Google Scholar 

  • Müller CE, Sandoval-Ramirez J, Schobert U, Geis U, Frobenius W, Klotz KN (1998) 8-(Sulfostyryl)xanthines: water-soluble A2A-selective adenosine receptor antagonists. Bioorg Med Chem 6:707–719

    Article  PubMed  Google Scholar 

  • Müller CE, Maurinsh J, Sauer R (2000) Binding of [3H]MSX-2 (3-(3-hydroxypropyl)-7-methyl-8-(m-methoxystyryl)-1-propargylxanthine) to rat striatal membranes - a new, selective antagonist radioligand for A2A adenosine receptors. Eur J Pharm Sci 10:259–265

    Article  PubMed  Google Scholar 

  • Müller CE, Thorand M, Qurishi R, Diekmann M, Jacobson KA, Padgett WL, Daly JW (2002a) Imidazo[2,1-i]purin-5-ones and related tricyclic water-soluble purine derivatives: potent A2A- and A3-adenosine receptor antagonists. J Med Chem 45:3440–3450

    Article  PubMed  CAS  Google Scholar 

  • Müller CE, Diekmann M, Thorand M, Ozola V (2002b) [3H]8-Ethyl-4-methyl-2-phenyl-(8R)-4,5,7,8-tetrahydro-1H-imidazo[2,1-i]purin-5-one ([3H]PSB-11), a novel high-affinity antagonist radioligand for human A3 adenosine receptors. Bioorg Med Chem Lett 12:501–503

    Article  PubMed  Google Scholar 

  • Müller CE, Ferré S (2007) Blocking striatal adenosine A2A receptors: a new strategy for basal ganglia disorders. Recent Patents CNS Drug Discov 2:1–21

    Article  Google Scholar 

  • Müller CE, Hockemeyer J, Tzvetkov NT, Burbiel JC (2008) Preparation of 8-ethynyl-xanthine derivatives as selective A2A receptor antagonists (SANOL Arznei Schwarz GmbH, Germany). PCT Int Appl; WO 2008077557 A1

    Google Scholar 

  • Nagel J, Schladebach H, Koch M, Schwienbacher I, Müller CE, Hauber W (2003) Effects of an adenosine A2A receptor blockade in the nucleus accumbens on locomotion, feeding, and prepulse inhibition in rats. Synapse 49:279–286

    Article  PubMed  CAS  Google Scholar 

  • Nieto MI, Balo MC, Brea J, Caamano O, Cadavid MI, Fernandez F, Mera XG, Lopez C, Rodriguez-Borges JE (2009) Synthesis of novel 1-alkyl-8-substituted 3-(3-methoxypropyl)xanthines as putative A2B receptor antagonists. Bioorg Med Chem 17:3426–3432

    Article  PubMed  CAS  Google Scholar 

  • Noguchi J, Ishiwata K, Furuat R, J-i S, Kiyosawa M, Ishii S-i, Endo K, Suzuki F, Senda M (1997) Evaluatioin of carbon-11 labeled KF15372 and its ethyl and methyl derivatives as a potential CNS adenosine A2 receptor ligand. Nucl Med Biol 24:53–59

    Article  PubMed  CAS  Google Scholar 

  • Nonaka Y, Shimada J, Nonaka H, Koike N, Aoki N, Kobayashi H, Kase H, Yamaguchi K, Suzuki F (1993) Photoisomerization of a potent and selective adenosine A2 antagonist, (E)-1,3-dipropyl-8-(3, 4-dimethoxystyryl)-7-methylxanthine. J Med Chem 36:3731–3733

    Article  PubMed  CAS  Google Scholar 

  • Nonaka H, Ichimura M, Takeda M, Nonaka Y, Shimada J, Suzuki F, Yamaguchi K, Kase H (1994a) KF17837 ((E)-8-(3, 4-dimethoxystyryl)-1,3-dipropyl-7-methylxanthine), a potent and selective adenosine A2 receptor antagonist. Eur J Pharmacol 267:335–341

    Article  PubMed  CAS  Google Scholar 

  • Nonaka H, Mori A, Ichimura M, Shindou T, Yanagawa K, Shimada J, Kase H (1994b) Binding of [3H]KF17837S, a selective adenosine A2 receptor antagonist, to rat brain membranes. Mol Pharmacol 46:817–822

    PubMed  CAS  Google Scholar 

  • Obiefuna PC, Batra VK, Nadeem A, Borron A, Wilson CN, Mustafa SJ (2005) A novel A1 adenosine receptor antagonist, L-97–1 [3-[2-(4-aminophenyl)-ethyl]-8-benzyl-7-{2-ethyl-(2-hydroxy-ethyl)-amino]-ethyl}-1-propyl-3,7-dihydro-purine-2,6-dione], reduces allergic responses to house dust mite in an allergic rabbit model of asthma. J Pharmacol Exp Ther 315:329–336

    Article  PubMed  CAS  Google Scholar 

  • Olah ME, Jacobson KA, Stiles GL (1989) Affinity chromatography of the bovine cerebral cortex A1 adenosine receptor. FEBS Lett 257:292–296

    Article  PubMed  CAS  Google Scholar 

  • Ozola V, Thorand M, Diekmann M, Qurishi R, Schumacher B, Jacobson KA, Müller CE (2003) 2-Phenylimidazo[2,1-i]purin-5-ones: structure-activity relationships and characterization of potent and selective inverse agonists at human A3 adenosine receptors. Bioorg Med Chem 11:347–356

    Article  PubMed  CAS  Google Scholar 

  • Park KS, Hoffmann C, Kim HO, Padgett WL, Daly JW, Brambilla R, Motta C, Abbracchio MP, Jacobson KA (1998) Activation and desensitization of rat A3-adenosine receptors by selective adenosine derivatives and xanthine-7-ribosides. Drug Dev Res 44:97–105

    Article  CAS  Google Scholar 

  • Pastorin G, Bolcato C, Cacciari B, Kachler S, Klotz K-N, Montopoli C, Moro S, Spalluto G (2005) Synthesis, biological and modelling studies of 1,3-di-n-propyl-2, 4-dioxo-6-methyl-8-(substituted) 1,2,3,4-tetrahydro[1,2,4]triazolo[3,4-f]purines as adenosine receptor antagonists. Farmaco 60:643–651

    Article  PubMed  CAS  Google Scholar 

  • Patel A, Craig RH, Daluge SM, Linden J (1988) 125I-BW-A844U, an antagonist radioligand with high affinity and selectivity for adenosine A1 receptors, and 125I-azido-BW-A844U, a photoaffinity label. Mol Pharmacol 33:585–591

    PubMed  CAS  Google Scholar 

  • Peet NP, Lentz NL, Dudley MW, Ogden AM, McCarty DR, Racke MM (1993) Xanthines with C8 chiral substituents as potent and selective adenosine A1 antagonists. J Med Chem 36:4015–4020

    Article  PubMed  CAS  Google Scholar 

  • Petzer JP, Steyn S, Castagnoli KP, Chen JF, Schwarzschild MA, Van der Schyf CJ, Castagnoli N (2003) Inhibition of monoamine oxidase B by selective adenosine A2A receptor antagonists. Bioorg Med Chem 11:1299–1310

    Article  PubMed  CAS  Google Scholar 

  • Petzer JP, Castagnoli N Jr, Schwarzschild MA, Chen J-F, Van der Schyf CJ (2009) Dual-target-directed drugs that block monoamine oxidase B and adenosine A2A receptors for Parkinson’s disease. Neurotherapeutics 6:141–151

    Article  PubMed  CAS  Google Scholar 

  • Pfister JR, Belardinelli L, Lee G, Lum RT, Milner P, Stanley WC, Linden J, Baker SP, Schreiner G (1997) Synthesis and biological evaluation of the enantiomers of the potent and selective A1-adenosine antagonist 1,3-dipropyl-8-[2-(5,6-epoxynorbornyl)]xanthine. J Med Chem 40:1773–1778

    Article  PubMed  CAS  Google Scholar 

  • Pretorius J, Malan SF, Castagnoli N Jr, Bergh JJ, Petzer JP (2008) Dual inhibition of monoamine oxidase B and antagonism of the adenosine A2A receptor by (E,E)-8-(4-phenylbutadien-1-yl)caffeine analogues. Bioorg Med Chem 16:8676–8684

    Article  PubMed  CAS  Google Scholar 

  • Priego E-M, von Frijtag Drabbe Kuenzel KJ, IJzerman AP, Camarasa M-J, Pérez-Pérez M-J (2002) Pyrido[2,1-f]purine-2,4-dione derivatives as a novel class of highly potent human A3 adenosine receptor antagonists. J Med Chem 45:3337–3344

    Article  PubMed  CAS  Google Scholar 

  • Priego E-M, Pérez-Pérez M-J, von Frijtag Drabbe Kuenzel JK, de Vries H, IJzerman AP, Camarasa M-J, Martín-Santamaría S (2008) Selective human adenosine A3 antagonists based on pyrido[2,1-f]purine-2,4-diones: novel features of hA3 antagonist binding. ChemMedChem 3:111–119

    Article  PubMed  CAS  Google Scholar 

  • Richardson PJ, Kase H, Jenner PG (1997) Adenosine A2A receptor antagonists as new agents for the treatment of Parkinson's disease. Trends Pharmacol Sci 18:338–344

    PubMed  CAS  Google Scholar 

  • Robeva AS, Woodard RL, Jin X, Gao Z, Bhattarcharya S, Taylor HE, Rosin DL, Linden J (1996) Molecular characterization of recombinant human adenosine receptors. Drug Dev Res 39:243–252

    Article  CAS  Google Scholar 

  • Saki M, Tsumuki H, Nonaka H, Shimada J, Ichimura M (2002) KF26777 (2-(4-bromophenyl)-7,8-dihydro-4-propyl-1H-imidazo[2,1-i]purin-5(4H)-one dihydrochloride), a new potent and selective adenosine A3 receptor antagonist. Eur J Pharmacol 444:133–141

    Article  PubMed  CAS  Google Scholar 

  • Salamone JD, Betz AJ, Ishiwari K, Felsted J, Madson L, Mirante B, Clark K, Font L, Korbey S, Sager TN, Hockemeyer J, Müller CE (2008a) Tremorolytic effects of adenosine A2A antagonists: implications for parkinsonism. Front Biosci 13:3594–3605

    Article  PubMed  CAS  Google Scholar 

  • Salamone JD, Ishiwari K, Betz AJ, Farrar AM, Mingote SM, Font L, Hockemeyer J, Müller CE, Correa M (2008b) Dopamine/adenosine interactions related to locomotion and tremor in animal models: possible relevance to parkinsonism. Parkinsonism Relat Disord 14(Suppl 2):S130–134

    Article  PubMed  Google Scholar 

  • Salvatore CA, Jacobson MA, Taylor HE, Linden J, Johnson RG (1993) Molecular cloning and characterization of the human A3 adenosine receptor. Proc Natl Acad Sci USA 90:10365–10369

    Article  PubMed  CAS  Google Scholar 

  • Sauer R, Maurinsh J, Reith U, Fülle F, Klotz KN, Müller CE (2000) Water-soluble phosphate prodrugs of 1-propargyl-8-styrylxanthine derivatives, A2A-selective adenosine receptor antagonists. J Med Chem 43:440–448

    Article  PubMed  CAS  Google Scholar 

  • Scammels PJ, Baker SP, Belardinelli L, Olsson RA (1994) Substituted 1,3-dipropylxanthines as irreversible antagonists of A1 adenosine receptors. J Med Chem 37:2704–2712

    Article  Google Scholar 

  • Schapira AH, Bezard E, Brotchie J, Calon F, Collingridge GL, Ferger B, Hengerer B, Hirsch E, Jenner P, Le Novere N, Obeso JA, Schwarzschild MA, Spampinato U, Davidai G (2006) Novel pharmacological targets for the treatment of Parkinson's disease. Nat Rev Drug Discov 5:845–854

    Article  PubMed  CAS  Google Scholar 

  • Schindler CW, Karcz-Kubicha M, Thorndike EB, Müller CE, Tella SR, Goldberg SR, Ferré S (2004) Lack of adenosine A1 and dopamine D2 receptor-mediated modulation oft he cardiovascular effects oft he adenosine A2A receptor agonist CGS 21680. Eur J Pharmacol 484:269–275

    Article  PubMed  CAS  Google Scholar 

  • Schindler CW, Karcz-Kubicha M, Thorndike EB, Müller CE, Tella SR, Ferré S, Goldberg SR (2005) Role of central and peripheral adenosine recepotrs in the cardiovascular responses to intraperitoneal injections of adenosine A1 and A2A subtype receptor agonists. Br J Pharmacol 144:642–650

    Article  PubMed  CAS  Google Scholar 

  • Schingnitz G, Küfner-Mühl U, Ensinger H, Lehr E, Kuhn FJ (1991) Selective A1 antagonists for treatment of cognitive deficits. Nucleosides Nucleotides 10:1067–1076

    Article  CAS  Google Scholar 

  • Schwarzschild MA, Agnati L, Fuxe K, Chen JF, Morelli M (2006) Targeting adenosine A2A receptors in Parkinson’s disease. Trends Neurosci 29:647–654

    Article  PubMed  CAS  Google Scholar 

  • Seale TW, Abla KA, Shamim MT, Carney JM, Daly JW (1988) 3,7-Dimethyl-1-propargylxanthine: a potent and selective in vivo antagonist of adenosine analogs. Life Sci 43:1671–1684

    Article  PubMed  CAS  Google Scholar 

  • Shamim MT, Ukena D, Padgett WL, Hong O, Daly JW (1988) 8-Aryl and 8-cycloalkyl-1,3-dipropylxanthines: further potent and selective antagonists for A1-adenosine receptors. J Med Chem 31:613–617

    Article  PubMed  CAS  Google Scholar 

  • Shamim MT, Ukena D, Padgett WL, Daly JW (1989) Effects of 8-phenyl and 8-cycloalkyl substituents on the activity of mono-, di-, and trisubstituted alkylxanthines with substitution at the 1-, 3-, and 7-positions. J Med Chem 32:1231–1237

    Article  PubMed  CAS  Google Scholar 

  • Shimada J, Suzuki F, Nonaka H, Ishii A (1992) 8-Polycycloalkyl-1,3-dipropylxanthines as potent and selective antagonists for A1-adenosine receptors. J Med Chem 35:924–930

    Article  PubMed  CAS  Google Scholar 

  • Shimada J, Koike N, Nonaka H, Shiozaki S, Yanagawa K, Kanda T, Kobayashi H, Ichimura M, Nakamura J, Kase H, Suzuki F (1997) Adenosine A2A antagonists with potent anti-cataleptic activity. Bioorg Med Chem Lett 7:2349–2352

    Article  CAS  Google Scholar 

  • Shukla D, Chakraborty S, Singh S, Mishra B (2009) Doxofylline: a promising methylxanthine derivative for the treatment of asthma and chronic obstructive pulmonary disease. Expert Opin Pharmacother 10:2343–2356

    Article  PubMed  CAS  Google Scholar 

  • Slawsky MT, Givertz MM (2009) Rolofylline: a selective adenosine 1 receptor antagonist fort he treatment of heart failure. Expert Opin Pharmacother 10:311–322

    Article  PubMed  CAS  Google Scholar 

  • Solinas M, Ferré S, Antoniou K, Quarta D, Zustinova Z, Pappas HJ, LA SPN, Wertheim C, Müller CE, Goldberg SR (2005) Involvement of adenosine A1 receptors in the discriminative-stimulus effects of caffeine in rats. Psychopharmacology 179:576–586

    Article  PubMed  CAS  Google Scholar 

  • Sorbera LA, Martín L, Castaner J (2000) Drugs Future 25:1011–1016

    Article  CAS  Google Scholar 

  • Soriano A, Ventura R, Molero A, Hoen R, Casadó V, Cortés A, Fanelli F, Albericio F, Lluís C, Franco R, Royo M (2009) Adenosine A2A receptor-antagonist/dopamine D2 receptor agonist bivalent ligands as pharmacological tools to detect A2A-D2 receptor heteromers. J Med Chem 52:5590–5602

    Article  PubMed  CAS  Google Scholar 

  • Stefanachi A, Brea JM, Cadavid MI, Centeno NB, Esteve C, Loza MI, Martinez A, Nieto R, Ravina E, Sanz F, Segarra V, Sotelo E, Vidal B, Carotti A (2008) 1-, 3- and 8-Substituted 9-deazaxanthines as potent and selective antagonists at the human A2B adenosine receptor. Bioorg Med Chem 16:2852–2869

    Article  PubMed  CAS  Google Scholar 

  • Stefanovich V (1989) The xanthines. Drug News Perspect 2:82–88

    Google Scholar 

  • Stiles GL, Jacobson KA (1987) A new high affinity, iodinated adenosine receptor antagonist as a radioligand/photoaffinity crosslinking probe. Mol Pharmacol 32:184–188

    PubMed  CAS  Google Scholar 

  • Stiles GL, Jacobson KA (1988) High affinity acylating antagonists for the A1 adenosine receptor: identification of binding subunit. Mol Pharmacol 34:724–728

    PubMed  CAS  Google Scholar 

  • Stone GA, Jarvis MF, Sills M, Weeks B, Snowhill EW, Williams M (1988) Species differences in high affinity adenosine A2 receptors in striatal membranes from mammalian brain. Drug Dev Res 15:31–46

    Article  CAS  Google Scholar 

  • Strömberg I, Popoli P, Müller CE, Ferré S, Fuxe K (2000) Electrophysiological and behavioural evidence for an antagonistic modulatory role of adenosine A2A receptors in dopamine D2 receptor regulation in the rat dopamine denervated striatum. Eur J Neurosci 12:4033–4037

    Article  PubMed  Google Scholar 

  • Suzuki F, Shimada J, Mizumoto H, Karasawa A, Kubo K, Nonaka H, Ishii A, Kawakita T (1992a) Adenosine A1 antagonists. 2. Structure-activity relationships on diuretic activities and protective effects against acute renal failure. J Med Chem 35:3066–3075

    Article  PubMed  CAS  Google Scholar 

  • Suzuki F, Shimada J, Nonaka H, Ishii A, Shiozaki S, Ichikawa S, Ono E (1992b) 7, 8-Dihydro-8-ethyl-2-(3-noradamantyl)-4-propyl-1H-imidazo[2,1-i]purin-5(4H)-one: a potent and water-soluble adenosine A1 antagonist. J Med Chem 35:3578–3581

    Article  PubMed  CAS  Google Scholar 

  • Takahashi RN, Pamplona FA, Prediger RD (2008) Adenosine receptor antagonists for cognitive dysfunction: a review of animal studies. Front Biosci 13:2614–2632

    Article  PubMed  CAS  Google Scholar 

  • Thorsell A, Johnson J, Heilig M (2007) Effect of the adenosine A2A receptor antagonist 3,7-dimethyl-propargylxanthine on anxiety-like and depression-like behavior and alcohol consumption in Wistar rats. Alcohol Clin Exp Res 31:1302–1307

    Article  PubMed  CAS  Google Scholar 

  • Ukena D, Jacobson KA, Kirk KL, Daly JW (1986a) A [3H]amine congener of 1,3-dipropyl-8-phenylxanthine. A new radioligand for A2 adenosine receptors of human platelets. FEBS Lett 199:269–274

    Article  PubMed  CAS  Google Scholar 

  • Ukena D, Jacobson KA, Padgett WL, Ayala C, Shamim MT, Kirk KL, Olsson RA, Daly JW (1986b) Species differences in structure-activity relationships of adenosine agonists and xanthine antagonists at brain A1 adenosine receptors. FEBS Lett 209:122–128

    Article  PubMed  CAS  Google Scholar 

  • Ukena D, Daly JW, Kirk KL, Jacobson KA (1986c) Functionalized congeners of 1,3-dipropyl-8-phenylxanthine: potent antagonists for adenosine receptors that modulate membrane adenylate cyclase in pheochromocytoma cells, platelets and fat cells. Life Sci 38:797–807

    Article  PubMed  CAS  Google Scholar 

  • Ukena D, Schudt C, Sybrecht GW (1993) Adenosine receptor-blocking xanthines as inhibitors of phosphodiesterase isozymes. Biochem Pharmacol 45:847–851

    Article  PubMed  CAS  Google Scholar 

  • van den Berg D, Zoellner KR, Ogunrombi MO, Malan SF, Terre'Blanche G, Castagnoli N Jr, Bergh JJ, Petzer JP (2007) Inhibition of monoamine oxidase B by selected benzimidazole and caffeine analogues. Bioorg Med Chem 15:3692–3702

    Article  PubMed  CAS  Google Scholar 

  • van Galen PJM, van Bergen AH, Gallo-Rodriguez C, Melman N, Olah ME, IJzerman AP, Stiles GL, Jacobson KA (1994) A binding site model and structure-activity relationships for the rat A3 adenosine receptor. Mol Pharmacol 45:1101–1111

    PubMed  Google Scholar 

  • van Muijlwijk-Koezen JE, Timmerman H, van der Sluis RP, van de Stolpe AC, Menge WM, Beukers MW, van der Graaf PH, de Groote M, IJzerman AP (2001) Synthesis and use of FSCPX, an irreversible adenosine A1 antagonist, as a ‘receptor knock-down’ tool. Bioorg Med Chem 11:815–818

    Article  CAS  Google Scholar 

  • Vlok N, Malan SF, Castagnoli N Jr, Bergh JJ, Petzer JP (2006) Inhibition of monoamine oxidase B by analogues of the adenosine A2A receptor antagonist (E)-8-(3-chlorostyryl)caffeine (CSC). Bioorg Med Chem 14:3512–2351

    Article  PubMed  CAS  Google Scholar 

  • Vollmann K, Qurishi R, Hockemeyer J, Müller CE (2008) Synthesis and properties of a new water-soluble prodrug of the adenosine A2A receptor antagonist MSX-2. Molecules 13:348–359

    Article  PubMed  CAS  Google Scholar 

  • Vu CB (2005) Recent advances in the design and optimization of adenosine A2A receptor antagonists. Curr Opin Drug Discov Dev 8:458–468

    CAS  Google Scholar 

  • Vu CB, Kiesman WF, Conlon PR, Lin K-C, Tam M, Petter RC, Smits G, Lutterodt F, Jin X, Chen L (2006) Zhang J (2006) Tricyclic imidazoline derivatives as potent and selective adenosine A1 receptor antagonists. J Med Chem 49:7132–7139

    Article  PubMed  CAS  Google Scholar 

  • Weiss HM, Grisshammer R (2002) Purification and characterization of the human adenosine A2a receptor functionally expressed in Escherichia coli. Eur J Biochem 269:82–92

    Article  PubMed  CAS  Google Scholar 

  • Weyler S, Fülle F, Diekmann M, Schumacher B, Hinz S, Klotz KN, Müller CE (2006) Improving potency, selectivity, and water-solubility of adenosine A1 receptor antagonists: xanthines modified at position 3 and related pyrimido[1,2,3-cd]purinediones. ChemMedChem 1:891–902

    Article  PubMed  CAS  Google Scholar 

  • Worden L, Shahriari M, Farrar A, Sink KS, Hockemeyer J, Müller CE, Salamone JD (2009) The adenosine A2A antagonist MSX-3 reverses the effort-related effects of dopamine blockade: differential interaction with D1 and D2 family antagonists. Psychopharmacology 203:489–499

    Article  PubMed  CAS  Google Scholar 

  • Yan L, Müller CE (2004) Preparation, properties, reactions, and adenosine receptor affinities of sulfophenylxanthine nitrophenyl esters: toward the development of sulfonic acid prodrugs with peroral bioavailability. J Med Chem 47:1031–1043

    Article  PubMed  CAS  Google Scholar 

  • Yan L, Bertarelli CG, Hayallah AM, Meyer H, Klotz KN, Müller CE (2006) A new synthesis of sulfonamides by aminolysis of p-nitrophenylsulfonates yielding potent and selective adenosine A2B receptor antagonists. J Med Chem 49:4384–4391

    Article  PubMed  CAS  Google Scholar 

  • Yu L, Shen HY, Coelho JE, Araujo IM, Huang QY, Day YJ, Rebola N, Canas PM, Rapp EK, Ferrara J, Taylor D, Müller CE, Linden J, Cunha RA, Chen JF (2008) Adenosine A2A receptor antagonists exert motor and neuroprotective effects by distinct cellular mechanisms. Ann Neurol 63:338–346

    Article  PubMed  CAS  Google Scholar 

  • Yuzlenko O, Kiec-Kononowicz K (2006) Potent adenosine A1 and A2A receptors antagonists: recent developments. Curr Med Chem 13:3609–3625

    Article  PubMed  CAS  Google Scholar 

  • Zablocki J, Kalla R, Perry T, Palle V, Varkhedkar V, Xiao D, Piscopio A, Maa T, Gimbel A, Hao J, Chu N, Leung K, Zeng D (2005) The discovery of a selective, high affinity A2B adenosine receptor antagonist for the potential treatment of asthma. Bioorg Med Chem 15:609–612

    Article  CAS  Google Scholar 

Download references

Acknowledgements

CEM is grateful for support by BMBF (BioPharma - Neuroallianz), DFG, DAAD, European Commission (ERANET Neuron), and the State of North-Rhine Westfalia (NRW International Research Graduate Schools BIOTECH-PHARMA and Chemical Biology). KAJ acknowledges support from the Intramural Research Program of NIIDK, NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christa E. Müller .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Müller, C.E., Jacobson, K.A. (2011). Xanthines as Adenosine Receptor Antagonists. In: Methylxanthines. Handbook of Experimental Pharmacology, vol 200. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13443-2_6

Download citation

Publish with us

Policies and ethics