Engineering Advantages, Challenges and Status of Sugarcane and other Sugar-Based Biomass Resources

  • Ricardo A. DanteEmail author
  • Plinio T. Cristofoletti
  • Isabel R. Gerhardt
Part of the Biotechnology in Agriculture and Forestry book series (AGRICULTURE, volume 66)


Sugarcane (Saccharum spp.) is a highly productive tropical stem crop that has been cultivated for its high sugar content for hundreds of years. In recent times, sugarcane has been the focus of several programs aiming at the production of fuel ethanol. Compared to starch-based sources such as corn, production of ethanol from sugarcane has obvious advantages due to the amount of photosynthate accumulated during the crop cycle and the low production costs of sugarcane. The rise of cellulosic ethanol technologies will allow the conversion of part of the sugarcane lignocellulosic materials into ethanol, thus maximizing the utilization of this crop as a biofuel feedstock. Despite the rapid progress made in recent years, breeding and biotechnology have been hampered by the complex nature of sugarcane genetics and physiology. Biotechnology and marker-assisted breeding have great potential for generating cultivars and optimizing the utilization of sugarcane sucrose and lignocellulosic materials as a source of fuel ethanol. Other sugar-producing plants, such as sweet sorghum and sugar beet, are also potential biofuel sources, especially in water-limited and temperate areas, respectively, where sugarcane cultivation is not economically viable.


Quantitative Trait Locus Sugar Beet Ethanol Production Corn Stover Sweet Sorghum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We wish to thank several colleagues at Monsanto who made helpful contributions to the content or editing of this review.


  1. Aitken K, Jackson P, McIntyre C (2005) A combination of AFLP and SSR markers provides extensive map coverage and identification of homo(eo)logous linkage groups in a sugarcane. Theor Appl Genet 110:789–801PubMedCrossRefGoogle Scholar
  2. Aitken KS, Jackson PA, McIntyre CL, Piperidis G (2002) Marker assisted introgressing of high sucrose genes in sugarcane. In: Proceedings of the 12th Australasian Plant Breeding Conference, Perth, Australia, 15–20 September 2002. p 120Google Scholar
  3. Aitken KS, Jackson PA, McIntyre CL (2006) Quantitative trait loci identified for sugar related traits in a sugarcane (Saccharum spp.) cultivar × Saccharum officinarum population. Theor Appl Genet 112:1306–1317PubMedCrossRefGoogle Scholar
  4. Aitken KS, Hermann S, Karno K, Bonnett GD, McIntyre LC, Jackson PA (2008) Genetic control of yield related stalk traits in sugarcane. Theor Appl Genet 117:1191–1203PubMedCrossRefGoogle Scholar
  5. Akin D (2007) Grass lignocellulose. Appl Biochem Biotechnol 137–140:3–15PubMedCrossRefGoogle Scholar
  6. Amyris Biotechnologies (2009) Amyris Brasil, Cited 28 September 2009
  7. Arencibia AD, Carmona ER (2006) Sugarcane (Saccharum spp.). Methods Mol Biol 344:227–235PubMedGoogle Scholar
  8. Arencibia A, Vázquez RI, Prieto D, Téllez P, Carmona ER, Coego A, Hernández L, Riva GADl, Selman-Housein G (1997) Transgenic sugarcane plants resistant to stem borer attack. Mol Breeding 3:247–255CrossRefGoogle Scholar
  9. Asnaghi C, Paulet F, Kaye C, Grivet L, Deu M, Glaszmann JC, D’Hont A (2000) Application of synteny across Poaceae to determine the map location of a sugarcane rust resistance gene. Theor Appl Genet 101:962–969CrossRefGoogle Scholar
  10. Asnaghi C, Roques D, Ruffel S, Kaye C, Hoarau J-Y, Télismart H, Girard JC, Raboin LM, Risterucci AM, Grivet L, D’Hont A (2004) Targeted mapping of a sugarcane rust resistance gene (Bru1) using bulked segregant analysis and AFLP markers. Theor Appl Genet 108:759–764PubMedCrossRefGoogle Scholar
  11. Atsumi S, Hanai T, Liao JC (2008) Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature 451:86–89PubMedCrossRefGoogle Scholar
  12. Bernardo R (2008) Molecular markers and selection for complex traits in plants: learning from the last 20 years. Crop Sci 48:1649–1664CrossRefGoogle Scholar
  13. Bout S, Vermerris W (2003) A candidate-gene approach to clone the sorghum Brown midrib gene encoding caffeic acid O-methyltransferase. Mol Genet Genomics 269:205–214PubMedGoogle Scholar
  14. Bower R, Birch RG (1992) Transgenic sugarcane plants via microprojectile bombardment. Plant J 2:409–416CrossRefGoogle Scholar
  15. Braga DPV, Arrigoni EDB, Burnquist WL, Silva-Filho MC, Ulian EC (2001) A new approach for control of Diatraea saccharalis (Lepidoptera: Crambidae) through the expression of an insecticidal CryIa(b) protein in transgenic sugarcane. Proc Int Soc Sugar Cane Technol 24:331–336Google Scholar
  16. Braga DPV, Arrigoni EDB, Silva-Filho MC, Ulian EC (2003) Expression of the Cry1Ab protein in genetically modified sugarcane for the control of Diatraea saccharalis (Lepidoptera: Crambidae). J New Seeds 5:209–221CrossRefGoogle Scholar
  17. Braithwaite KS, Geijskes RJ, Smith GR (2004) A variable region of the sugarcane bacilliform virus (SCBV) genome can be used to generate promoters for transgene expression in sugarcane. Plant Cell Rep 23:319–326PubMedCrossRefGoogle Scholar
  18. Bundock PC, Eliott FG, Ablett G, Benson AD, Casu RE, Aitken KS, Henry RJ (2009) Targeted single nucleotide polymorphism (SNP) discovery in a highly polyploid plant species using 454 sequencing. Plant Biotechnol J 7:347–354PubMedCrossRefGoogle Scholar
  19. Calsa T, Figueira A (2007) Serial analysis of gene expression in sugarcane (Saccharum spp.) leaves revealed alternative C4 metabolism and putative antisense transcripts. Plant Mol Biol 63:745–762PubMedCrossRefGoogle Scholar
  20. Casler MD, Jung HG, Coblentz WK (2008) Clonal selection for lignin and etherified ferulates in three perennial grasses. Crop Sci 48:424–433CrossRefGoogle Scholar
  21. Casu RE, Grof CPL, Rae AL, McIntyre CL, Dimmock CM, Manners JM (2003) Identification of a novel sugar transporter homologue strongly expressed in maturing stem vascular tissues of sugarcane by expressed sequence tag and microarray analysis. Plant Mol Biol 52:371–386PubMedCrossRefGoogle Scholar
  22. Casu RE, Dimmock CM, Chapman SC, Grof CP, McIntyre CL, Bonnett GD, Manners JM (2004) Identification of differentially expressed transcripts from maturing stem of sugarcane by in silico analysis of stem expressed sequence tags and gene expression profiling. Plant Mol Biol 54:503–517PubMedCrossRefGoogle Scholar
  23. Casu RE, Jarmey JM, Bonnett GD, Manners JM (2007) Identification of transcripts associated with cell wall metabolism and development in the stem of sugarcane by Affymetrix GeneChip Sugarcane Genome Array expression profiling. Funct Integr Genomics 7:153–167PubMedCrossRefGoogle Scholar
  24. Chen F, Dixon RA (2007) Lignin modification improves fermentable sugar yields for biofuel production. Nat Biotechnol 25:759–761PubMedCrossRefGoogle Scholar
  25. Christensen A, Quail P (1996) Ubiquitin promoter-based vectors for high-level expression of selectable and/or screenable marker genes in monocotyledonous plants. Transgenic Res 5:213–218PubMedCrossRefGoogle Scholar
  26. Christy L, Arvinth S, Saravanakumar M, Kanchana M, Mukunthan N, Srikanth J, Thomas G, Subramonian N (2009) Engineering sugarcane cultivars with bovine pancreatic trypsin inhibitor (aprotinin) gene for protection against top borer (Scirpophaga excerptalis Walker). Plant Cell Rep 28:175–184PubMedCrossRefGoogle Scholar
  27. Cordeiro G, Casu R, McIntyre C, Manners J, Henry R (2001) Microsatellite markers from sugarcane (Saccharum spp.) ESTs cross transferable to erianthus and sorghum. Plant Sci 160:1115–1123PubMedCrossRefGoogle Scholar
  28. Cordeiro G, Eliott F, McIntyre C, Casu R, Henry R (2006) Characterisation of single nucleotide polymorphisms in sugarcane ESTs. Theor Appl Genet 113:331–343PubMedCrossRefGoogle Scholar
  29. Cordeiro G, Amouyal O, Eliott F, Henry R (2007) Sugarcane. In: Kole C (ed) Pulses, sugar and tuber crops, vol 3. Springer, Heidelberg, pp 175–203CrossRefGoogle Scholar
  30. Coyle W (2007) The future of biofuels: a global perspective. Cited 19 September 2009
  31. Damaj MB, Kumpatla SP, Emani C, Beremand PD, Reddy AS, Rathore KS, Buenrostro-Nava MT, Curtis IS, Thomas TL, Mirkov TE (2010) Sugarcane DIRIGENT and O-METHYLTRANSFERASE promoters confer stem-regulated gene expression in diverse monocots. Planta, doi: 10.1007/s00425-010-1138-5Google Scholar
  32. Da Silva JA, Bressiani JA (2005) Sucrose synthase molecular marker associated with sugar content in elite sugarcane progeny. Genet Mol Biol 28:294–298CrossRefGoogle Scholar
  33. Daugrois JH, Grivet L, Roques D, Hoarau JY, Lombard H, Glaszmann JC, D’Hont A (1996) A putative major gene for rust resistance linked with a RFLP marker in sugarcane cultivar ‘R570’. Theor Appl Genet 92:1059–1064CrossRefGoogle Scholar
  34. De Marchis F, Wang Y, Stevanato P, Arcioni S, Bellucci M (2009) Genetic transformation of the sugar beet plastome. Transgenic Res 18:17–30PubMedCrossRefGoogle Scholar
  35. De Souza AP, Gaspar M, da Silva EA, Ulian EC, Waclawovsky AJ, Nishiyama MY Jr, dos Santos R, Teixeira MM, Souza GM, Buckeridge MS (2008) Elevated CO2 increases photosynthesis, biomass and productivity, and modifies gene expression in sugarcane. Plant Cell Environ 31:1116–1127PubMedCrossRefGoogle Scholar
  36. D’Hont A, Souza GM, Menossi M, Vincentz M, Van-Sluys M-A, Glaszmann JC, Ulian E (2008) Sugarcane: a major source of sweetness, alcohol, and bio-energy. In: Moore PH, Ming R (eds) Genomics of tropical crop plants, vol 1. Springer, New York, pp 483–513CrossRefGoogle Scholar
  37. Dufour P, Deu M, Grivet L, D’Hont A, Paulet F, Bouet A, Lanaud C, Glaszmann JC, Hamon P (1997) Construction of a composite sorghum genome map and comparison with sugarcane, a related complex polyploid. Theor Appl Genet 94:409–418CrossRefGoogle Scholar
  38. Eathington SR, Crosbie TM, Edwards MD, Reiter RS, Bull JK (2007) Molecular markers in a commercial breeding program. Crop Sci 47:S154–S163CrossRefGoogle Scholar
  39. Edgerton MD (2009) Increasing crop productivity to meet global needs for feed, food, and fuel. Plant Physiol 149:7–13PubMedCrossRefGoogle Scholar
  40. Falco M, Silva-Filho M (2003) Expression of soybean proteinase inhibitors intransgenic sugarcane plants: effects on natural defense against Diatrea saccharalis. Plant Physiol Biochem 41:761–766CrossRefGoogle Scholar
  41. Falco MC, Tulmann Neto A, Ulian EC (2000) Transformation and expression of a gene for herbicide resistance in a Brazilian sugarcane. Plant Cell Rep 19:1188–1194CrossRefGoogle Scholar
  42. FAOSTAT (2007) FAO (United Nations Food and Agricultural Organization), Rome. Cited 17 September 2009
  43. Food and Agricultural Policy Research Institute (2009) FAPRI 2009 U.S. and World Agricultural Outlook. Cited 18 September 2009
  44. Farrell AE, Plevin RJ, Turner BT, Jones AD, O’Hare M, Kammen DM (2006) Ethanol can contribute to energy and environmental goals. Science 311:506–508PubMedCrossRefGoogle Scholar
  45. Francis SA (2006) The development of sugarbeet. In: Draycott AP (ed) Sugar beet. Wiley-Blackwell, Oxford, pp 9–29CrossRefGoogle Scholar
  46. Freelman KC, Braodhead DM, Zummo N, Westbrook FE (1986) Sweet sorghum culture and syrup production. USDA Agriculture Handbook, Number 611, United States Department of Agriculture, Washington, DCGoogle Scholar
  47. Gallo-Meagher M, Irvine JE (1996) Herbicide resistant transgenic sugarcane plants containing the bar gene. Crop Sci 36:1367–1374CrossRefGoogle Scholar
  48. Gao ZS, Jayaraj J, Muthukrishnan S, Claflin L, Liang GH (2005) Efficient genetic transformation of sorghum using a visual screening marker. Genome 48:321–333PubMedCrossRefGoogle Scholar
  49. Garcia AAF, Kido EA, Meza AN, Souza HMB, Pinto LR, Pastina MM, Leite CS, Silva JAG, Ulian EC, Figueira A, Souza AP (2006) Development of an integrated genetic map of a sugarcane (Saccharum spp.) commercial cross, based on a maximum-likelihood approach for estimation of linkage and linkage phases. Theor Appl Genet 112:298–314PubMedCrossRefGoogle Scholar
  50. Girijashankar V, Sharma HC, Sharma KK, Swathisree V, Prasad LS, Bhat BV, Royer M, San Secundo B, Narasu ML, Altosaar I, Seetharama N (2005) Development of transgenic sorghum for insect resistance against the Spotted Stem Borer (Chilo partellus). Plant Cell Rep 24:513–522PubMedCrossRefGoogle Scholar
  51. Glaszmann JC, Dufour P, Grivet L, D’Hont A, Deu M, Paulet F, Hamon P (1997) Comparative genome analysis between several tropical grasses. Euphytica 96:13–21CrossRefGoogle Scholar
  52. Gnansounou E, Dauriat A, Wyman CE (2005) Refining sweet sorghum to ethanol and sugar: economic trade-offs in the context of North China. Bioresour Technol 96:985–1002PubMedCrossRefGoogle Scholar
  53. Godwin ID (2004) Sorghum genetic engineering: current status and prospectus. In: Seetharama N, Godwin I (eds) Sorghum tissue culture and transformation. Oxford & IBH, New Delhi, pp 1–8Google Scholar
  54. Goldemberg J (2007) Ethanol for a sustainable energy future. Science 315:808–810PubMedCrossRefGoogle Scholar
  55. Goldemberg J, Guardabassi P (2009) Are biofuels a feasible option? Energy Policy 37:10–14CrossRefGoogle Scholar
  56. Grivet L, D’Hont A, Dufour P, Hamon P, Roques D, Glaszmann JC (1994) Comparative genome mapping of sugar cane with other species within the Andropogoneae tribe. Heredity 73:500–508CrossRefGoogle Scholar
  57. Grivet L, Glaszmann JC, Vincentz M, da Silva F, Arruda P (2003) ESTs as a source for sequence polymorphism discovery in sugarcane: example of the Adh genes. Theor Appl Genet 106:190–197PubMedGoogle Scholar
  58. Groenewald J-H, Botha FC (2008) Down-regulation of pyrophosphate: fructose 6-phosphate 1-phosphotransferase (PFP) activity in sugarcane enhances sucrose accumulation in immature internodes. Transgenic Res 17:85–92PubMedCrossRefGoogle Scholar
  59. Groenewald J-H, Hiten NF, Botha FC (2000) The introduction of an inverted repeat to the 5’ untranslated leader sequence of a transgene strongly inhibits gene expression. Plant Cell Rep 19:1098–1101CrossRefGoogle Scholar
  60. Guimarães CT, Sills GR, Sobral BWS (1997) Comparative mapping of Andropogoneae: Saccharum L. (sugarcane) and its relation to sorghum and maize. Proc Natl Acad Sci USA 94:14261–14266PubMedCrossRefGoogle Scholar
  61. Gupta P, Rustgi S, Mir R (2008) Array-based high-throughput DNA markers for crop improvement. Heredity 101:5–18PubMedCrossRefGoogle Scholar
  62. Hoarau J-Y, Grivet L, Offmann B, Raboin L-M, Diorflar J-P, Payet J, Hellmann M, D’Hont A, Glaszmann JC (2002) Genetic dissection of a modern sugarcane cultivar (Saccharum spp.). II. Detection of QTLs for yield components. Theor Appl Genet 105:1027–1037PubMedCrossRefGoogle Scholar
  63. Hood EE, Love R, Lane J, Bray J, Clough R, Pappu K, Drees C, Hood KR, Yoon S, Ahmad A, Howard JA (2007) Subcellular targeting is a key condition for high-level accumulation of cellulase protein in transgenic maize seed. Plant Biotechnol J 5:709–719PubMedCrossRefGoogle Scholar
  64. Howe A, Sato S, Dweikat I, Fromm M, Clemente T (2006) Rapid and reproducible Agrobacterium-mediated transformation of sorghum. Plant Cell Rep 25:784–791PubMedCrossRefGoogle Scholar
  65. Inman-Bamber NG, Bonnett GD, Spillman MF, Hewitt ML, Jackson J (2008) Increasing sucrose accumulation in sugarcane by manipulating leaf extension and photosynthesis with irrigation. Aust J Agric Res 59:13–26CrossRefGoogle Scholar
  66. Inman-Bamber NG, Bonnett GD, Spillman MF, Hewitt ML, Xu J (2009) Source-sink differences in genotypes and water regimes influencing sucrose accumulation in sugarcane stalks. Crop Pasture Sci 60:316–327CrossRefGoogle Scholar
  67. Irvine J (1975) Relations of photosynthetic rates and leaf canopy characters to sugarcane yield. Crop Sci 15:671–676CrossRefGoogle Scholar
  68. Ivic-Haymes SD, Smigocki AC (2005) Biolistic transformation of highly regenerative sugar beet (Beta vulgaris L.) leaves. Plant Cell Rep 23:699–704PubMedCrossRefGoogle Scholar
  69. Jackson PA (2005) Breeding for improved sugar content in sugarcane. Field Crops Res 92:277–290CrossRefGoogle Scholar
  70. Jannoo N, Grivet L, Chantret N, Garsmeur O, Glaszmann JC, Arruda P, D’Hont A (2007) Orthologous comparison in a gene-rich region among grasses reveals stability in the sugarcane polyploid genome. Plant J 50:574–585PubMedCrossRefGoogle Scholar
  71. Jogeswar G, Ranadheer D, Anjaiah V, Kavi Kishor PB (2007) High frequency somatic embryogenesis and regeneration in different genotypes of Sorghum bicolor (L.) Moench from immature inflorescence explants. In Vitro Cell Dev Biol Plant 43:159–166Google Scholar
  72. Lakshmanan P, Geijskes R, Aitken K, Grof C, Bonnett G, Smith G (2005) Sugarcane biotechnology: the challenges and opportunities. In Vitro Cell Dev Biol Plant 41:345–363CrossRefGoogle Scholar
  73. Leibbrandt NB, Snyman SJ (2003) Stability of gene expression and agronomic performance of a transgenic herbicide-resistant sugarcane line in South Africa. Crop Sci 43:671–677CrossRefGoogle Scholar
  74. Li X, Weng J-K, Chapple C (2008) Improvement of biomass through lignin modification. Plant J 54:569–581PubMedCrossRefGoogle Scholar
  75. Licht FO (2006) World ethanol markets—the outlook to 2015. Agra Informa, Tunbridge Wells, UKGoogle Scholar
  76. Lima DU, Santos HP, Tiné MA, Molle FRD, Buckeridge MS (2001) Patterns of expression of cell wall related genes in sugarcane. Genet Mol Biol 24:191–198CrossRefGoogle Scholar
  77. Lima MLA, Garcia AAF, Oliveira KM, Matsuoka S, Arizono H, de Souza CL Jr, de Souza AP (2002) Analysis of genetic similarity detected by AFLP and coefficient of parentage among genotypes of sugar cane (Saccharum spp.). Theor Appl Genet 104:30–38PubMedCrossRefGoogle Scholar
  78. Macedo IC, Cortez LAB (2000) Sugar-cane industrial processing in Brazil. In: Rosillo-Calle F, Bajay SV, Rothman H (eds) Industrial uses of biomass energy. Taylor-Francis, London, pp 140–154Google Scholar
  79. Manickavasagam M, Ganapathi A, Anbazhagan VR, Sudhakar B, Selvaraj N, Vasudevan A, Kasthurirengan S (2004) Agrobacterium-mediated genetic transformation and development of herbicide-resistant sugarcane (Saccharum species hybrids) using axillary buds. Plant Cell Rep 23:134–143PubMedCrossRefGoogle Scholar
  80. Martin VJ, Pitera DJ, Withers ST, Newman JD, Keasling JD (2003) Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nat Biotechnol 21:796–802PubMedCrossRefGoogle Scholar
  81. Matsuoka S, Ferro J, Arruda P (2009) The Brazilian experience of sugarcane ethanol industry. In Vitro Cell Dev Biol Plant 45:372–381CrossRefGoogle Scholar
  82. McCormick AJ, Cramer MD, Watt DA (2006) Sink strength regulates photosynthesis in sugarcane. New Phytol 171:759–770PubMedCrossRefGoogle Scholar
  83. McCormick AJ, Watt DA, Cramer MD (2008a) Changes in photosynthetic rates and gene expression of leaves during a source sink perturbation in sugarcane. Ann Bot 101:89–102PubMedCrossRefGoogle Scholar
  84. McCormick AJ, Cramer MD, Watt DA (2008b) Regulation of photosynthesis by sugars in sugarcane leaves. J Plant Physiol 165:1817–1829PubMedCrossRefGoogle Scholar
  85. McCormick AJ, Cramer MD, Watt DA (2008c) Culm sucrose accumulation promoter physiological decline of mature leaves in ripening sugarcane. Field Crops Res 108:250–258CrossRefGoogle Scholar
  86. McIntyre CL, Whan VA, Croft B, Magarey R, Smith GR (2005) Identification and validation of molecular markers associated with Pachymetra Root Rot and Brown Rust resistance in sugarcane using map- and association-based approaches. Mol Breeding 16:151–161CrossRefGoogle Scholar
  87. Ming R, Liu SC, Lin YR, da Silva J, Wilson W, Braga D, van Deynze A, Wenslaff TF, Wu KK, Moore PH, Burnquist W, Sorrells ME, Irvine JE, Paterson AH (1998) Detailed alignment of Sorghum and Saccharum chromosomes: comparative organization of closely related diploid and polyploid genomes. Genetics 150:1663–1882PubMedGoogle Scholar
  88. Moore PH (1995) Temporal and spatial regulation of sucrose accumulation in the sugarcane stem. Aust J Plant Physiol 22:661–679CrossRefGoogle Scholar
  89. Mudge SR, Osabe K, Casu RE, Bonnett GD, Manners JM, Birch RG (2008) Efficient silencing of reporter transgenes coupled to known functional promoters in sugarcane, a highly polyploid crop species. Planta 229:549–558PubMedCrossRefGoogle Scholar
  90. Nass LL, Pereira PAA, Ellis D (2007) Biofuels in Brazil: an overview. Crop Sci 47:2228–2237CrossRefGoogle Scholar
  91. Nicholson TL (2007) Carbon turnover and sucrose metabolism in the culm of transgenic sugarcane producing 1-kestose. MSc Thesis. University of Stellenbosch, Matieland, South AfricaGoogle Scholar
  92. Nogueira FTS, De Rosa VE Jr, Menossi M, Ulian EC, Arruda P (2003) RNA expression profiles and data mining of sugarcane response to low temperature. Plant Physiol 132:1811–1824PubMedCrossRefGoogle Scholar
  93. Nogueira FTS, Schlögl PS, Camargo SR, Fernandez JH, Vicente E, De Rosa J, Pompermayer P, Arruda P (2005) SsNAC23, a member of the NAC domain protein family, is associated with cold, herbivory and water stress in sugarcane. Plant Sci 169:93–106CrossRefGoogle Scholar
  94. Nutt KA, Allsopp PG, McGhie TK, Shepherd KM, Joyce PA, Taylor GO, McQualter RB, Smith GR (1999) Transgenic sugarcane with increased resistance to canegrubs. Proc Aust Soc Sugar Cane Technol 21:171–176Google Scholar
  95. Oliveira KM, Pinto LR, Marconi TG, Margarido GRA, Pastina MM, Teixeira LHM, Figueira AV, Ulian EC, Garcia AAF, Souza AP (2007) Functional integrated genetic linkage map based on EST-markers for a sugarcane (Saccharum spp.) commercial cross. Mol Breeding 20:189–208CrossRefGoogle Scholar
  96. Oliveira KM, Pinto LR, Marconi TG, Mollinari M, Ulian EC, Chabregas SM, Falco MC, Burnquist W, Garcia AAF, Souza AP (2009) Characterization of new polymorphic functional markers for sugarcane. Genome 52:191–209PubMedCrossRefGoogle Scholar
  97. Oraby H, Venkatesh B, Dale B, Ahmad R, Ransom C, Oehmke J, Sticklen M (2007) Enhanced conversion of plant biomass into glucose using transgenic rice-produced endoglucanase for cellulosic ethanol. Transgenic Res 16:739–749PubMedCrossRefGoogle Scholar
  98. Pandey A, Soccol CR, Nigam P, Soccol VT (2000) Biotechnological potential of agro-industrial residues. I: sugarcane bagasse. Bioresour Technol 74:69–80CrossRefGoogle Scholar
  99. Papini-Terzi F, Rocha F, Vencio R, Felix J, Branco D, Waclawovsky A, Del Bem L, Lembke C, Costa M, Nishiyama M, Vicentini R, Vincentz M, Ulian E, Menossi M, Souza G (2009) Sugarcane genes associated with sucrose content. BMC Genomics 10:120PubMedCrossRefGoogle Scholar
  100. Papini-Terzi FS, Rocha FR, Nicoliello Vencio RZ, Oliveira KC, de Maria Felix J, Vicentini R, de Souza Rocha C, Quirino Simões AC, Ulian EC, Marli Zingaretti di Mauro S, Maria Da Silva A, Alberto de Braganca Pereira C, Menossi M, Souza GM (2005) Transcription profiling of signal transduction-related genes in sugarcane tissues. DNA Res 12:27–38PubMedCrossRefGoogle Scholar
  101. Paterson AH, Bowers JE, Bruggmann R, Dubchak I, Grimwood J, Gundlach H, Haberer G, Hellsten U, Mitros T, Poliakov A, Schmutz J, Spannagl M, Tang H, Wang X, Wicker T, Bharti AK, Chapman J, Feltus FA, Gowik U, Grigoriev IV, Lyons E, Maher CA, Martis M, Narechania A, Otillar RP, Penning BW, Salamov AA, Wang Y, Zhang L, Carpita NC, Freeling M, Gingle AR, Hash CT, Keller B, Klein P, Kresovich S, McCann MC, Ming R, Peterson DG, Mehboob-ur-Rahman, Ware D, Westhoff P, Mayer KF, Messing J, Rokhsar DS (2009) The Sorghum bicolor genome and the diversification of grasses. Nature 457:551–556PubMedCrossRefGoogle Scholar
  102. Paul MJ, Foyer CH (2001) Sink regulation of photosynthesis. J Exp Bot 52:1383–1400PubMedCrossRefGoogle Scholar
  103. Pessoa A Jr, Mancilha IM, Sato S (1997) Acid hydrolysis of hemicellulose from sugarcane bagasse. Braz J Chem Eng 14:309–312CrossRefGoogle Scholar
  104. Pinto LR, Oliveira KM, Ulian EC, Garcia AAF, de Souza AP (2004) Survey in the sugarcane expressed sequence tag database (SUCEST) for simple sequence repeats. Genome 47:795–804PubMedCrossRefGoogle Scholar
  105. Pinto LR, Oliveira KM, Marconi T, Garcia AAF, Ulian EC, Souza APd (2006) Characterization of novel sugarcane expressed sequence tag microsatellites and their comparison with genomic SSRs. Plant Breed 125:378–384CrossRefGoogle Scholar
  106. Porter KS, Axtell J D, Lechtenberg VL, Colenbrander V F (1978) Phenotype, fiber composition, and in vitro dry matter disappearance of chemically induced brown midrib (bmr) mutants of sorghum. Crop Sci 18:205–208CrossRefGoogle Scholar
  107. Prasad P, Vu J, Boote K, Allen L (2009) Enhancement in leaf photosynthesis and upregulation of Rubisco in the C4 sorghum plant at elevated growth carbon dioxide and temperature occur at early stages of leaf ontogeny. Funct Plant Biol 36:761–769CrossRefGoogle Scholar
  108. Prasad S, Singh, Anoop, Jain N, Joshi H C (2007) Ethanol production from sweet sorghum syrup for utilization as automotive fuel in India. Energy Fuel 21:2415–2420CrossRefGoogle Scholar
  109. Raboin L, Oliveira K, Lecunff L, Telismart H, Roques D, Butterfield M, Hoarau J, D’Hont A (2006) Genetic mapping in sugarcane, a high polyploid, using bi-parental progeny: identification of a gene controlling stalk colour and a new rust resistance gene. Theor Appl Genet 112:1382–1391PubMedCrossRefGoogle Scholar
  110. Ragauskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J, Eckert CA, Frederick WJ Jr, Hallett JP, Leak DJ, Liotta CL, Mielenz JR, Murphy R, Templer R, Tschaplinski T (2006) The path forward for biofuels and biomaterials. Science 311:484–489PubMedCrossRefGoogle Scholar
  111. Ramos RLB, Tovar FJ, Junqueira RM, Lino FB, Sachetto-Martins G (2001) Sugarcane expressed sequences tags (ESTs) encoding enzymes involved in lignin biosynthesis pathways. Genet Mol Biol 24:235–241CrossRefGoogle Scholar
  112. Reffay N, Jackson PA, Aitken KS, Hoarau J-Y, D’Hont A, Besse P, McIntyre CL (2005) Characterisation of genome regions incorporated from an important wild relative into Australian sugarcane. Mol Breeding 15:367–381CrossRefGoogle Scholar
  113. Rocha F, Papini-Terzi F, Nishiyama M, Vencio R, Vicentini R, Duarte R, de Rosa V, Vinagre F, Barsalobres C, Medeiros A, Rodrigues F, Ulian E, Zingaretti S, Galbiatti J, Almeida R, Figueira A, Hemerly A, Silva-Filho M, Menossi M, Souza G (2007) Signal transduction-related responses to phytohormones and environmental challenges in sugarcane. BMC Genomics 8:71PubMedCrossRefGoogle Scholar
  114. Rossi M, Araujo PG, Paulet F, Garsmeur O, Dias VM, Chen H, Van Sluys M-A, D’Hont A (2003) Genomic distribution and characterization of EST-derived resistance gene analogs (RGAs) in sugarcane. Mol Genet Genomics 269:406–419PubMedCrossRefGoogle Scholar
  115. Saballos A (2008) Development and utilization of sorghum as a bioenergy crop. In: Vermerris W (ed) Genetic improvement of bioenergy crops. Springer, New York, pp 211–248CrossRefGoogle Scholar
  116. Saballos A, Ejeta G, Sanchez E, Kang C, Vermerris W (2009) A genome-wide analysis of the cinnamyl alcohol dehydrogenase family in sorghum (Sorghum bicolor (L.) Moench) identifies SbCAD2 as the Brown midrib6 gene. Genetics 181:783–795PubMedCrossRefGoogle Scholar
  117. Sainz M (2009) Commercial cellulosic ethanol: the role of plant-expressed enzymes. In Vitro Cell Dev Biol Plant 45:314–329CrossRefGoogle Scholar
  118. Sattler SE, Saathoff AJ, Haas EJ, Palmer NA, Funnell-Harris DL, Sarath G, Pedersen JF (2009) A nonsense mutation in a cinnamyl alcohol dehydrogenase gene is responsible for the sorghum brown midrib6 phenotype. Plant Physiol 150:584–595PubMedCrossRefGoogle Scholar
  119. Schenk PM, Remans T, Sági L, Elliott AR, Dietzgen RG, Swennen R, Ebert PR, Grof CPL, Manners JM (2001) Promoters for pregenomic RNA of banana streak badnavirus are active for transgene expression in monocot and dicot plants. Plant Mol Biol 47:399–412PubMedCrossRefGoogle Scholar
  120. Schlögl PS, Nogueira FTS, Drummond R, Felix JM, de Rosa VE Jr, Vicentini R, Leite A, Ulian EC, Menossi M (2008) Identification of new ABA- and MEJA-activated sugarcane bZIP genes by data mining in the SUCEST database. Plant Cell Rep 27:335–345PubMedCrossRefGoogle Scholar
  121. Sendelius J (2005) Steam pretreatment optimisation for sugarcane bagasse in bioethanol production. MSc Thesis. Lund University, Lund, SwedenGoogle Scholar
  122. Sévenier R, Hall RD, van der Meer I, Hakkert HJ, van Tunen AJ, Koops AJ (1998) High level fructan accumulation in a transgenic sugar beet. Nat Biotechnol 16:843–846PubMedCrossRefGoogle Scholar
  123. Songstad DD, Lakshmanan P, Chen J, Gibbons W, Hughes S, Nelson R (2009) Historical perspective of biofuels: learning from the past to rediscover the future. In Vitro Cell Dev Biol Plant 45:189–192CrossRefGoogle Scholar
  124. Sticklen MB (2008) Plant genetic engineering for biofuel production: towards affordable cellulosic ethanol. Nat Rev Genet 9:433–443PubMedCrossRefGoogle Scholar
  125. Sugarcane Genome Sequencing Initiative (2009) In: Proceedings of the Plant and Animal Genome XVIII Conference, San Diego, CAGoogle Scholar
  126. Syvänen A-C (2005) Toward genome-wide SNP genotyping. Nat Genet 27:S5–S10CrossRefGoogle Scholar
  127. UNICA (2009) União das Indústrias de Cana-de-açúcar. Dados e Cotações—Estatísticas. Cited 18 September 2009
  128. University of Queensland (2009) UQ researchers produce world’s first transgenic sweet sorghum. Cited 13 November 2009
  129. USDA (2006) The economic feasibility of ethanol production from sugar in the United States. US Department of Agriculture. Cited 18 October 2009
  130. Vettore AL, da Silva FR, Kemper EL, Arruda P (2001) The libraries that made SUCEST. Genet Mol Biol 24:1–7CrossRefGoogle Scholar
  131. Vettore AL, da Silva FR, Kemper EL, Souza GM, da Silva AM, Ferro MIT, Henrique-Silva F, Giglioti EA, Lemos MVF, Coutinho LL, Nobrega MP, Carrer H, Franca SC, Bacci M Jr, Goldman MHS, Gomes SL, Nunes LR, Camargo LEA, Siqueira WJ, Van Sluys M-A, Thiemann OH, Kuramae EE, Santelli RV, Marino CL, Targon MLPN, Ferro JA, Silveira HCS, Marini DC, Lemos EGM, Monteiro-Vitorello CB, Tambor JHM, Carraro DM, Roberto PG, Martins VG, Goldman GH, de Oliveira RC, Truffi D, Colombo CA, Rossi M, de Araujo PG, Sculaccio SA, Angella A, Lima MMA, de Rosa Jr. VE, Siviero F, Coscrato VE, Machado MA, Grivet L, Di Mauro SMZ, Nobrega FG, Menck CFM, Braga MDV, Telles GP, Cara FAA, Pedrosa G, Meidanis J, Arruda P (2003) Analysis and functional annotation of an expressed sequence tag collection for tropical crop sugarcane. Genome Res 13:2725–2735PubMedCrossRefGoogle Scholar
  132. Vogel J (2008) Unique aspects of the grass cell wall. Curr Opin Plant Biol 3:301–307CrossRefGoogle Scholar
  133. Vu JCV, Allen LH Jr, Gesch RW (2006) Up-regulation of photosynthesis and sucrose metabolism enzymes in young expanding leaves of sugarcane under elevated growth CO2. Plant Sci 171:123–131CrossRefGoogle Scholar
  134. Vu JCV, Allen LH Jr (2009a) Growth at elevated CO2 delays the adverse effects of drought stress on leaf photosynthesis of the C4 sugarcane. J Plant Physiol 166:107–116PubMedCrossRefGoogle Scholar
  135. Vu JCV, Allen LH Jr (2009b) Stem juice production of the C4 sugarcane (Saccharum officinarum) is enhanced by growth at double-ambient CO2 and high temperature. J Plant Physiol 166:1141–1151PubMedCrossRefGoogle Scholar
  136. Wand S, Midgley G, Jones M, Curtis PS (1999) Responses of wild C4 and C3 grass (Poaceae) species to elevated atmospheric CO2 concentration: a meta-analytic test of current theories and perceptions. Glob Change Biol 5:723–741CrossRefGoogle Scholar
  137. Wang ML, Goldstein C, Su W, Moore PH, Albert HH (2005) Production of biologically active GM-CSF in sugarcane: a secure biofactory. Transgenic Res 14:167–178PubMedCrossRefGoogle Scholar
  138. Wei H, Wang ML, Moore PH, Albert HH (2003) Comparative expression analysis of two sugarcane polyubiquitin promoters and flanking sequences in transgenic plants. J Plant Physiol 160:1241–1251PubMedCrossRefGoogle Scholar
  139. Weng J-K, Li X, Bonawitz ND, Chapple C (2008) Emerging strategies of lignin engineering and degradation for cellulosic biofuel production. Curr Opin Biotechnol 19:166–172PubMedCrossRefGoogle Scholar
  140. Weng L-X, Deng H, Xu J-L, Li Q, Wang L-H, Jiang Z, Zhang HB, Li Q, Zhang L-H (2006) Regeneration of sugarcane elite breeding lines and engineering of stem borer resistance. Pest Manag Sci 62:178–187PubMedCrossRefGoogle Scholar
  141. Wenzl P, Carling J, Kudrna D, Jaccoud D, Huttner E, Kleinhofs A, Kilian A (2004) Diversity arrays technology (DarT) for whole genome profiling of barley. Proc Natl Acad Sci USA 101:9915–9920PubMedCrossRefGoogle Scholar
  142. Weyens G, Ritsema T, Van Dun K, Meyer D, Lommel M, Lathouwers J, Rosquin I, Denys P, Tossens A, Nijs M, Turk S, Gerrits N, Bink S, Walraven B, Lefèbvre M, Smeekens S (2004) Production of tailor-made fructans in sugar beet by expression of onion fructosyltransferase genes. Plant Biotechnol J 2:321–327PubMedCrossRefGoogle Scholar
  143. Whittaker A, Botha FC (1999) Pyrophosphate: d-fructose-6-phosphate 1-phosphotransferase activity patterns in relation to sucrose storage across sugarcane varieties. Physiol Plant 107:379–386CrossRefGoogle Scholar
  144. Woods J (2001) The potential for energy production using sweet sorghum in southern Africa. Energ Sustain Develop 5:31–38CrossRefGoogle Scholar
  145. Wu L, Birch RG (2007) Doubled sugar content in sugarcane plants modified to produce a sucrose isomer. Plant Biotechnol J 5:109–117PubMedCrossRefGoogle Scholar
  146. Wyman CE, Dale BE, Elander RT, Holtzapple M, Ladisch MR, Lee YY (2005) Coordinated development of leading biomass pretreatment technologies. Bioresource Technol 96:1959–1966CrossRefGoogle Scholar
  147. Zhu H, Muthukrishnan S, Krishnaveni S, Wilde G, Jeoung JM, Liang GH (1998) Biolistic transformation of sorghum using a rice chitinase gene. J Genet Breed 52:243–252Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Ricardo A. Dante
    • 1
    Email author
  • Plinio T. Cristofoletti
    • 1
  • Isabel R. Gerhardt
    • 2
  1. 1.Canavialis e AlellyxCampinasBrazil
  2. 2.Embrapa FlorestasColomboBrazil

Personalised recommendations