Advertisement

Designing Plants To Meet Feedstock Needs

  • Peter N. Mascia
  • Michael Portereiko
  • Mark Sorrells
  • Richard B. Flavell
Chapter
Part of the Biotechnology in Agriculture and Forestry book series (AGRICULTURE, volume 66)

Abstract

Species suitable for providing biomass feedstocks are described together with the essential traits needed in such feedstocks. These traits include those that are essential for successful sustainable production in the field and for their use in conversion into biofuels and co-products. Features of plant breeding are summarized together with the evidence from corn and other crops that substantial gains can be made by breeding using existing methods. The new methods based on molecular genetics that will gradually come to dominate breeding of energy crops are then outlined. These include complete genome sequencing to describe the genetic variation available and the genetic basis of key traits. The use of molecular polymorphic markers to help enable and accelerate selection of improved crops using marker assisted breeding, association breeding and genomic selection is summarized. Finally, opportunities that come from the use of trangenes are outlined, covering both yield-based traits and the biosynthesis of novel chemicals.

Keywords

Cytoplasmic Male Sterility Genomic Selection Sweet Sorghum Energy Crop Heterotic Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Ahn S, Anderson JA, Sorrells ME, Tanksley SD (1993) Homoeologous relationships of rice, wheat and maize chromosomes. Mol Gen Genet 241(5–6):483–490PubMedCrossRefGoogle Scholar
  2. Anderson WF, Akin DE (2008) Structural and chemical properties of grass lignocellulose related to conversion for biofuels. J Ind Microbiol Biotechnol 35:355–366PubMedCrossRefGoogle Scholar
  3. Barney JN, Ditomaso JM (2008) Nonnative species and bioenergy: are we cultivating the next invader? BioSci 58:64–70. doi: 10.1641/b580111CrossRefGoogle Scholar
  4. Barth S, Busimi AK, Utz HF, Melchinger AE (2003) Heterosis for biomass yield and related traits in five hybrids of Arabidopsis thaliana L. Heynh. Heredity 91:36–42CrossRefGoogle Scholar
  5. Bennetzen JL (2000) Comparative sequence analysis of plant nuclear genomes microcollinearity and its many exceptions. Plant Cell 12(7):1021–1030PubMedGoogle Scholar
  6. Bingham ET, Groose RW, Woodfield DR, Kidwell KK (1994) Complementary gene interactions in alfalfa are greater in autotetraploids than diploids. Crop Sci 34:823–829CrossRefGoogle Scholar
  7. Bouton JH (2007) Molecular breeding of switchgrass as a bioenergy crop. Curr Opin Genet Dev 17:553–558PubMedCrossRefGoogle Scholar
  8. Breseghello F, Sorrells ME (2006) Association analysis as a strategy for improvement of quantitative traits in plants. Crop Sci 46:1323–1330CrossRefGoogle Scholar
  9. Buanafina MM, Langdon T, Hauck B, Dalton S, Morris P (2007) Expression of a fungal ferulic esterase increases cell wall digestibility of tall fescue (Festuca arundinacea). Plant Biotechnol J 6(3):264–280. doi: 10.1111/j1467–7652PubMedCrossRefGoogle Scholar
  10. Chapple C, Ladisch M, Melian R (2007) Loosening lignin’s grip on biofuel production. Nat Biotechnol 25:746–747PubMedCrossRefGoogle Scholar
  11. Chen F, Dixon RA (2007) Lignin modification improves fermentable yields for biofuel production. Nat Biotechnol 25:759–761PubMedCrossRefGoogle Scholar
  12. Crow JF (1948) Alternative hypotheses of hybrid vigor. Genetics 33:477–487PubMedGoogle Scholar
  13. Daniell H (2002) Molecular strategies for gene containment in transgenic crops. Nat Biotechnol 20:581–586PubMedCrossRefGoogle Scholar
  14. Devos KM, Gale MD (2000) Genome relationships. Plant Cell 12(5):637–646PubMedGoogle Scholar
  15. Duvick DN (1999) Heterosis: feeding people and protecting natural resources. In: Coors JG, Pandey S (eds) Genetics and exploitation of heterosis in crops. American Society of Agronomy, Madison, WI, pp 19–30Google Scholar
  16. East EM (1936) Heterosis. Genetics 21:375–397PubMedGoogle Scholar
  17. Eathington SR, Crosbie TM, Edwards MD, Reiter RS, Bull JK (2007) Molecular markers in a commercial breeding program. Crop Sci 47:S154–S163CrossRefGoogle Scholar
  18. El Bassam N (1998) Energy plant species. James & James, LondonGoogle Scholar
  19. Foote T, Roberts M, Kurata N, Sasaki T, Moore G (1997) Detailed comparative mapping of cereal chromosome regions corresponding to the Ph1 locus in wheat. Genetics 147:801–807PubMedGoogle Scholar
  20. Freeman GF (1919) Heredity of quantitative characters in bread wheat. Genetics 4:1–93PubMedGoogle Scholar
  21. Gale MD, Devos KM (1998) Comparative genetics in the grasses. Proc Natl Acad Sci USA 95:1971–1974PubMedCrossRefGoogle Scholar
  22. Gaut BS (2001) Patterns of chromosomal duplication in maize and their implications for comparative maps of the grasses. Genome Res 11:55–66PubMedCrossRefGoogle Scholar
  23. Gaut BS (2002) Evolutionary dynamics of grass genomes. New Phytol 154(1):15–28CrossRefGoogle Scholar
  24. Gomez LD, Steele-King CG, McQueen-Mason SJ (2008) Sustainable liquid biofuels from biomass; the writing is on the walls. New Phytol 178(3):473–485. doi: 10.1111/j1469–8137PubMedCrossRefGoogle Scholar
  25. Grabber JH (2005) How do lignin composition structure and cross linking affect degradability? A review of cell wall model studies. Crop Sci 45:820–831CrossRefGoogle Scholar
  26. Groose RW, Kojis WP, Bingham ET (1988) Combining ability differences between isogenic and tetraploid alfalfa. Crop Sci 28:7–10CrossRefGoogle Scholar
  27. Hallauer AR, Carena MJ (2009) Maize breeding. In: Carena MJ (ed) Handbook of plant breeding, vol 3. Cereals. Springer, New York, pp 1–96Google Scholar
  28. Heaton EA, Mascia PN, Flavell R, Thomas S, Long PS, Dohleman FG (2008) Energy crop development: current progress and future prospects. Curr Opin Biotechnol 19:202–209PubMedCrossRefGoogle Scholar
  29. Heffner EL, Sorrells ME, Jannink JL (2009) Genomic selection for crop improvement. Crop Sci 49:1–12CrossRefGoogle Scholar
  30. Heffner EL, Lorenz AJ, Jannink JL, Sorrells ME (2010) Plant breeding with genomic selection: potential gain per unit time and cost. Crop Sci (in press)Google Scholar
  31. Hills M, Hall L, Arnison P, Good A (2007) Genetic use restriction technologies (GURTs). Strategies to impede transgene movement. Trends Plant Sci 12:177–183PubMedCrossRefGoogle Scholar
  32. Himmel ME, Ding SY, Johnson DK, Adney WS, Nimlos MR, Brady JW, Foust TD ((2007) Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315(5813):804–807PubMedCrossRefGoogle Scholar
  33. Hisano H, Nandakumar R, Wang ZY (2009) Genetic modification of lignin biosynthesis for improved biofuel production. In Vitro Cell Dev Biol Plant 45:306–313CrossRefGoogle Scholar
  34. Hochholdinger F, Hoecher N (2007) Towards the molecular basis of heterosis. Trends Plant Sci 12:4427–432CrossRefGoogle Scholar
  35. Holland JB (2004) Implementation of molecular markers for quantitative traits in breeding programs—challenges and opportunities. In: New directions for a diverse planet: Proceedings of the 4th International Crop Sci Congress, Brisbane Australia, p 26Google Scholar
  36. Hulbert SH, Richter TE, Axtell JD, Bennetzen JL (1990) Genetic mapping and characterization of sorghum and related crops by means of maize DNA probes. Proc Natl Acad Sci USA 87(11):4251–4255PubMedCrossRefGoogle Scholar
  37. Jakob K, Zhou F, Paterson AH (2009) Genetic improvement of C4 grasses as cellulosic biofuel feedstocks. In Vitro Cell Dev Biol Plant 45:291–305CrossRefGoogle Scholar
  38. Jessup RW (2009) Development and status of dedicated energy crops in the United States. In Vitro Cell Dev Biol Plant 45:282–290CrossRefGoogle Scholar
  39. Krutovsky KV, St. Clair JB, Saich R, Hipkins VD, Neale DB (2009) Estimation of population structure in coastal Douglas-fir [Pseudotsuga menziesii (Mirb.) Franco var. menziesii] using allozyme and microsatellite markers. Tree Genet Genomes 5:641–658CrossRefGoogle Scholar
  40. Kurata N, Nagamura Y, Yamamoto K, Harushima Y, Sue N, Wu J, Antonio BA, Shomura A, Shimizu T, Lin SY, Inoue T, Fukuda A, Shimano T, Kuboki Y, Toyama T, Miyamoto Y, Kirihara T, Hayasaka K, Miyao A, Monna L, Zhong HS, Tamura Y, Wang ZX, Momma T, Umehara Y, Yano M, Sasaki T, Minobe Y (1994) A 300 kilobase interval genetic map of rice including 883 expressed sequences. Nat Genet 8:365–372PubMedCrossRefGoogle Scholar
  41. Kuroiwa T, Kawazu T, Uchida H, Ohta T, Kuroiwa H (1993) Direct evidence of plastid DNA and mitochondrial DNA in sperm cells in relation to biparental inheritance of organelle DNA in Pelargonium zonale by fluorescence/electron microscopy. Eur J Cell Biol 62:307–313PubMedGoogle Scholar
  42. Lamkey KR, Edwards JW (1999) Quantitative genetics of heterosis. In: Coors JG, Pandey S (eds) Genetics and exploitation of heterosis in crops. American Society of Agronomy, Madison, WI, pp 31–48Google Scholar
  43. Lande R, Thompson R (1990) Efficiency of marker-assisted selection in the improvement of quantitative traits. Genetics 124:743–756PubMedGoogle Scholar
  44. Lau MW, Gunawan C, Dale B (2009) The impacts of pretreatment on the germentability of pretreated lignocellulose biomass: a comparative evaluation between ammonia fiber expansion and dilute acid pretreatment. Biotech Biofuels 2:30CrossRefGoogle Scholar
  45. Levings CS, Dudley JW, Alexander DE (1967) Inbreeding and crossing in autotetraploid maize. Crop Sci 7:72–73CrossRefGoogle Scholar
  46. Lister R, Gregory BD, Ecker JR (2009) Next is now: new technologies for sequencing of genomes; transcriptomes; and beyond. Curr Opin Plant Biol 12:1–12CrossRefGoogle Scholar
  47. Martinez-Reyna JM, Vogel KP (2008) Heterosis in switchgrass: spaced plants. Crop Sci 48:1312–1320CrossRefGoogle Scholar
  48. Mascia PN, Flavell RB (2004) Safe and acceptable strategies for producing foreign molecules in plants. Curr Opin Plant Biol 7:189–195PubMedCrossRefGoogle Scholar
  49. McCann MC, Carpita NC (2008) Designing the deconstruction of plant cell walls. Curr Opin Plant Biol 11:314–320PubMedCrossRefGoogle Scholar
  50. Meuwissen THE, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157:1819–1829PubMedGoogle Scholar
  51. Meyer RC, Törjék O, Becher M, Altmann T (2004) Heterosis of biomass production in Arabidopsis. Establishment during early development. Plant Physiol 134:1813–1823PubMedCrossRefGoogle Scholar
  52. Mok DWS, Peloquin SJ (1975) Breeding value of 2n pollen (diplandroids) in tetraploid x diploid crosses in potatoes. Theor Appl Genet 46:307–314Google Scholar
  53. Mooney BP (2009) The second green revolution? Production of plant-based biodegradable plastics. Biochem J 418(2):219–232PubMedCrossRefGoogle Scholar
  54. Murray SC, Rooney WL, Hamblin MT, Mitchell SE, Kresovich S (2009) Sweet sorghum genetic diversity and association mapping for Brix and height. Plant Genome 1:48–62CrossRefGoogle Scholar
  55. Osborn TC, Pires JC, Birchler JA, Auger DL, Chen ZJ, Lee HS, Comai L, Madlung A, Doerge RW, Colot V, Martienssen RA (2003) Understanding mechanisms of novel gene expression in polyploids. Trends Genet 19:141–147PubMedCrossRefGoogle Scholar
  56. Paterson AH, Bowers JE, Feltus FA, Tang H, Lin L, Wang X (2009a) Comparative genomics of grasses promises a bountiful harvest. Plant Physiol 149:125–131PubMedCrossRefGoogle Scholar
  57. Paterson AH, Bowers JE, Bruggmann R, Dubchak I, Grimwood J, Gundlach H, Haberer G, Hellsten U, Mitros T, Poliakov A, Schmutz J, Spannagl M, Tang H, Wang X, Wicker T, Bharti AK, Chapman J, Feltus FA, Gowik U, Grigoriev IV, Lyons E, Maher CA, Martis M, Narechania A, Otillar RP, Penning BW, Salamov AA, Wang Y, Zhang L, Carpita NC, Freeling M, Gingle AR, Hash CT, Keller B, Klein P, Kresovich S, McCann MC, Ming R, Peterson DG, Rahman MU, Ware D, Westhoff P, Mayer KFX, Messing J, Rokhsar DS (2009b) The sorghum bicolor genome and the diversification of grasses. Nature 457:551–556PubMedCrossRefGoogle Scholar
  58. Pavy N, Pelgas B, Beauseigle S, Blais S, Gagnon F, Gosselin I, Lamothe M, Isabel N, Bousquet J (2008) Enhancing genetic mapping of complex genomes through the design of highly-multiplexed SNP arrays: application to the large and unsequenced genomes of white spruce and black spruce. BMC Genomics 9:21PubMedCrossRefGoogle Scholar
  59. Penning BW, Hunter III CT, Tayengwa R, Eveland AL, Dugard CK, Olek AT, Vermerris W, Koch KE, McCarty DR, Davis MF, Thomas SR, McCann MC, Carpita NC (2009) Genetic resources for maize cell wall biology. Plant Physiol 151:1703–1728PubMedCrossRefGoogle Scholar
  60. Perlack RD, Wright LL, Turhollow AF, Graham RL, Stokes BJ, Erbach DC (2005) Biomass as feedstock for a bioenergy and bioproducts industry: the technical feasibility of a billion-ton annual supply. USDA report, Oak Ridge National Laboratory, TN, pp 1–78CrossRefGoogle Scholar
  61. Ralph J, Akiyama T, Kim H, Lu F, Schatz PF, Marita JM, Ralph SA, Reddy MSS, Chen F, Dixon R (2006) Effects of coumarate 3-hydroxylase down regulation on on lignin structure. J Biol Chem 281:8843–8853PubMedCrossRefGoogle Scholar
  62. Richardson TH, Tan X, Frey G, Callen W, Cabell M, Lam D, Macomber J, Short JM, Robertson DE, Miller C (2002) A novel, high performance enzyme for starch liquefaction: discovery and optimization of a low pH, thermostable alpha-amylase. J Biol Chem 277:26501–26507PubMedCrossRefGoogle Scholar
  63. Rooney WL, Blumenthal J, Bean B, Mullet JE (2007) Designing sorghum as a dedicated bioenergy feedstock. Biofuels Bioprod Biorefining 1:147–157CrossRefGoogle Scholar
  64. Sarath G, Akin DE, Mitchell RB, Vogel KP (2008) Cell wall composition and accessibility to hydrolytic enzymes is differentially altered in divergently bred switchgrass (Panicum virgatum L.) genotypes. Appl Biochem Biotechnol 150:1–14PubMedCrossRefGoogle Scholar
  65. Schnable PS, Ware D, Fulton RS, Stein JC, Wei F, Pasternak S, Liang C, Zhang J, Fulton L, Graves TA, Minx P, Reily AD, Courtney L, Kruchowski SS, Tomlinson C, Strong C, Delehaunty K, Fronick C, Courtney B, Rock SM, Belter E, Du F, Kim K, Abbott RM, Cotton M, Levy A, Marchetto P, Ochoa K, Jackson SM, Gillam B, Chen W, Yan L, Higginbotham J, Cardenas M, Waligorski J, Applebaum E, Phelps L, Falcone J, Kanchi K, Thane T, Scimone A, Thane N, Henke J, Wang T, Ruppert J, Shah N, Rotter K, Hodges J, Ingenthron E, Cordes M, Kohlberg S, Sgro J, Delgado B, Mead K, Chinwalla A, Leonard S, Crouse K, Collura K, Kudrna D, Currie J, He R, Angelova A, Rajasekar S, Mueller T, Lomeli R, Scara G, Ko A, Delaney K, Wissotski M, Lopez G, Campos D, Braidotti M, Ashley E, Golser W, Kim H, Lee S, Lin J, Dujmic Z, Kim W, Talag J, Zuccolo A, Fan C, Sebastian A, Kramer M, Spiegel L, Nascimento L, Zutavern T, Miller B, Ambroise C, Muller S, Spooner W, Narechania A, Ren L, Wei S, Kumari S, Faga B. Levy M, McMahan L, Van Buren P, Vaughn MW, Ying K, Yeh CT, Emrich SJ, Jia Y, Kalyanaraman A, Hsia AP, Barbazuk WB, Baucom RS, Brutnell TP, Carpita NC, Chaparro C, Chia JM, Deragon JM, Estill JC, Fu Y, Jeddeloh JA, Han Y, Lee H, Li P, Lisch DR, Liu S, Liu Z, Nagel DH, McCann MC, SanMiguel P, Myers AM, Nettleton D, Nguyen J, Penning BW, Ponnala L, Schneider KL, Schwartz DC, Sharma A, Soderlund C, Springer NM, Sun Q, Wang H, Waterman M, Westerman R, Wolfgruber TK, Yang L, Yu Y, Zhang L, Zhou S, Zhu Q, Bennetzen JL, Dawe RK, Jiang J, Jiang N, Presting GG, Wessler SR, Aluru S, Martienssen RA, Clifton SW, McCombie WR, Wing RA, Wilson RK (2009) The B73 maize genome: complexity, diversity and dynamics. Science 326(5956):1112–1115PubMedCrossRefGoogle Scholar
  66. Shi C, Uzarowska A, Ouzunova M, Landbeck M, Wenzel G, Lübberstedt T (2007) Identification of candidate genes associated with cell wall digestibility and eQTL (expression quantitative trait loci) analysis in a Flint x Flint maize recombinant inbred line population. BMC Genomics 8:22PubMedCrossRefGoogle Scholar
  67. Shull GH (1952) Beginnings of the heterosis concept. In: Gowen JW (ed) Heterosis: a record of researches directed toward explaining and utilizing the vigor of hybrids. Iowa State College Press, Ames, pp 14–48Google Scholar
  68. Somleva MN, Snell KD, Beaulieu JJ, Peoples OP, Garrison BR, Patterson NA (2008) Production of polyhydroxybutyrate in switchgrass, a value-added co-product in an important lignocellulosic biomass crop Plant Biotechnol J 6(7):633–678CrossRefGoogle Scholar
  69. Song R, Messing J (2003) Gene expression of a gene family in maize based on noncollinear haplotypes. Proc Natl Acad Sci USA 100:9055–9066PubMedCrossRefGoogle Scholar
  70. Swanson-Wagner RA, DeCook R, Jia Y, Bancroft T, Ji T, Zhao X, Nettleton D, Schnable PS (2009) Paternal cominance of trans-eQTL influences gene expression patterns in maize hybrids. Science 326(5956):1118–1120PubMedCrossRefGoogle Scholar
  71. Tilman D, Socolow R, Foley JA, Hill J, Larson E, Lynd L, Pacala S, Reilly J, Searchinger T, Somerville C, Williams R (2009) Beneficial biofuels—the food, energy and environment trilemma. Science 325:270–271PubMedCrossRefGoogle Scholar
  72. Troyer AF, Mascia PN (1998) Key technologies impacting corn genetic improvement—past, present and future. Maydica 44:55–68Google Scholar
  73. Van Deynze AE, Nelson JC, Yglesias ES, Harrington SE, Braga DP, McCouch SR, Sorrells ME (1995) Comparative mapping in grasses. Wheat relationships. Mol Gen Genet 248(6):744–754PubMedCrossRefGoogle Scholar
  74. Varshney RK, Nayak SN, May GD, Jackson SA (2009) Next generation sequencing technologies and their implications for crop genetics and breeding. Trends Biotechnol 27:522–530PubMedCrossRefGoogle Scholar
  75. Vermerris W (2009) Genetic improvement of bioenergy crops. Springer, New YorkGoogle Scholar
  76. Vermerris W, Saballos A, Ejeta G, Mosier N, Ladisch M, Carpita N (2007) Molecular breeding to enhance ethanol production from corn and sorghum stover. Crop Sci 47 S3:S142–S153Google Scholar
  77. Vogel KP (2000) Improving warm-season grasses using selection, breeding, and biotechnology. In: Moore KJB Anderson B (eds) Native warm season grasses: research trends and issues. CSSA Spec Publ 30 CSSA and ASA, Madison, WIGoogle Scholar
  78. Vogel KP, Burson B (2004) Breeding and genetics. In: Moser LE, Sollenberger L, Burson B (eds) Warm-season (C4) grasses. ASA Monogr 45 ASA, CSSA and SSSA, Madison, WIGoogle Scholar
  79. Wang X, Gowik U, Tang H, Bowers J, Westhoff P, Paterson A (2009) Comparative genomic analysis of C4 photosynthetic pathway evolution in grasses Genome Biol 10: R68PubMedCrossRefGoogle Scholar
  80. Weider C, Stamp P, Christov N, Husken A, Foueillassar X, Camp K-H, Munsch M (2009) Stability of cytoplasmic male sterility in maize under different environmental conditions. Crop Sci 49:77–84. doi: 10.2135/cropsci2007120694CrossRefGoogle Scholar
  81. Wolt JD (2009) Advancing environmental risk assessment for transgenic biofeedstock crops. Biotechnol Biofuels 2:27PubMedCrossRefGoogle Scholar
  82. Wyman CE, Dale BE, Elander RT, Holtzapple M, Ladisch MR, Lee YY (2005) Coordinated development of leading biomass pretreatment technologies. Bioresour Technol 96:1050–1966Google Scholar
  83. Xu YB, Crouch JH (2008) Marker-assisted selection in plant breeding: from publications to practice. Crop Sci 48:391–407CrossRefGoogle Scholar
  84. Yu HS, Russell SD (1994) Occurrence of mitochondria in the nuclei of tobacco sperm cells. Plant Cell 6:1477–1484. doi: 10.1105/tpc6101477PubMedGoogle Scholar
  85. Yu J, Pressoir G, Briggs WH, Bi IV, Yamasaki M, Doebley JF, McMullen MD, Gaut BS, Nielsen DM, Holland JB (2006) A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet 38:203–208PubMedCrossRefGoogle Scholar
  86. Zhong SQ, Dekkers JCM, Fernando RL, Jannink JL (2009) Factors affecting accuracy from genomic selection in populations derived from multiple inbred lines: a barley case study. Genetics 182:355–364PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Peter N. Mascia
    • 1
  • Michael Portereiko
    • 1
  • Mark Sorrells
    • 2
  • Richard B. Flavell
    • 1
  1. 1.CeresThousand OaksUSA
  2. 2.Department of Plant Breeding and GeneticsCornell UniversityIthacaUSA

Personalised recommendations