Integrated Biorefineries—A Bottom-Up Approach to Biomass Fractionation

  • Birgit KammEmail author
Part of the Biotechnology in Agriculture and Forestry book series (AGRICULTURE, volume 66)


The development of biorefineries represents the key to accessing the integrated production of food, feed, chemicals, materials, goods, fuels and energy in the future. Biorefineries combine the required technologies for biogenic raw materials from agriculture and forestry with those of intermediate and final products. The specific focus of this chapter is the combination of green agriculture with physical and biotechnological processes for production of proteins as well as the platform chemicals lactic acid and lysine. The mass and energy flows (steam and electricity) of the biorefining of green biomass into these platform chemicals, proteins, and feed as well as biogas from residues are given. Economic and ecologic aspects for the cultivation of green biomass and the production of platform chemicals are described.


Itaconic Acid Levulinic Acid Kojic Acid Press Cake Green Crop 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Annetts JE, Audsley E (2003) Modelling the value of a rural biorefinery. Part I: the model description. Part II: analysis and implications. Agric Syst 76:39–76CrossRefGoogle Scholar
  2. Audsley E, Sells JE (1997) Determining the profitability of a whole crop biorefinery. In: Campbell GM, Webb C, McKee SL (eds) Cereals—novel uses and processes. Plenum, New York, pp 191–294Google Scholar
  3. Bartholomew WH, Reismann HB (1979) Economics of fermentation processes. In: Peppler HJ, Perlman D (eds) Microbial technology, 2nd edn, vol 2. Academic, New YorkGoogle Scholar
  4. BIO (2004) New biotech tools for a cleaner environment—industrial biotechnology for pollution prevention. Resource Conservation and Cost Reduction Biotechnology Industry Organisation; Google Scholar
  5. Bohlmann G (2002) Several reports on White Biotechnology processes. Stanford Research International, Menlo Park, CAGoogle Scholar
  6. Bozell JJ (2004) Alternative feedstocks for bioprocessing. In: Goodman RM (ed) Encyclopedia of plant and crop science. Dekker, New York, doi: 10.1081/E-EPCS-120010437Google Scholar
  7. BRDI (2006) Vision for bioenergy and biobased products in the United States. Biomass Research and Development Initiative.
  8. Bruhn HD, Straub RJ, Koegel RG (1978) A systems approach to the production of plant juice protein concentrate. In: Proceedings of the International Grain and Forage Harvesting Conference, American Society of Agricultural Engineers, St. Joseph, MIGoogle Scholar
  9. BTAC (2002a) Roadmap for biomass technologies in the United States. Biomass Technical Advisory Committee, Washington DC. http://www.bioproducts–
  10. BTAC (2002b) Vision for bioenergy and biobased products in the United States, Biomass Technical Advisory Committee, Washington DC, http://www.bioproducts– Google Scholar
  11. BTAC (2007) Roadmap for bioenergy and biobased products in the United States, October 2006. Biomass R&D Technical Advisory Board,
  12. Bundesministerium für Ernährung, Landwirtschaft und Verbraucherschutz (2009) Aktionsplan der Bundesregierung zur stofflichen Nutzung nachwachsender Rohstoffe. BT–Drucksache 16/14061 vom 03.09.2009Google Scholar
  13. Carlsson R (1983) Leaf protein concentrate from plant sources in temperate climates. In: Telek L, Graham HD (eds) Leaf protein concentrates. AVI, Westport, pp 52–80Google Scholar
  14. Carlsson R (1994) Sustainable primary production. Green crop fractionation: effects of species, growth conditions, and physiological development. In: Pessarakli M (ed) Handbook of plant and crop physiology. Dekker, NY, pp 941–963Google Scholar
  15. Carlsson R (1998) Status quo of the utilization of green biomass. In: Soyez S, Kamm B, Kamm M (eds) The green biorefinery. Proceedings of 1st International Green Biorefinery Conferenze, Neuruppin, Germany, 1997, GÖT, Berlin, ISBN 3–929672–06–5Google Scholar
  16. Coombs J, Hall K (1997) The potential of cereals as industrial raw materials: legal technical, commercial considerations In: Campbell GM, Webb C, McKee SL (eds) Cereals—novel uses and processes. Plenum, New York, pp 1–12Google Scholar
  17. Datta R, Tsai S-P (1997) Lactic acid production and potential uses: a technology and economics assessment. In: Saha BC, Woodward J (eds) Fuels and chemicals from biomass. American Chemical Society, Washington DC 1997, p 224CrossRefGoogle Scholar
  18. DuPont (2004) US patent 5 686 276,
  19. Elements Degussa Science Newsletter (2005) 7:35Google Scholar
  20. ETPSC (2005) European Technology Platform for Sustainable Chemistry, Industrial Biotechnology Section,
  21. EU-Projekt BIOPOL (2007) Specific Support Action, Priority Scientific Support to Policies,
  22. EU-Projekt Biorefinery-Euroview (2007) Specific Support Action, Priority Scientific Support to Policies, http://www.biorefinery–
  23. EuropaBio (2003) White biotechnology—gateway to a more sustainable future. EuropaBio, LyonGoogle Scholar
  24. European Parliament and Council (2003) Directive 2003/30/EC on the promotion of the use of biofuels or other renewable fuels for transport; Official Journal of the European Union L123/42, 17.05.2003, BrusselsGoogle Scholar
  25. Fantozzi P (1989) (ed) Proceedings of the 3rd International Leaf Protein Research Conference, Pisa–Perugia–Viterbo, ItalyGoogle Scholar
  26. Favati F et al (1989) Energy evaluation of a wet green crop fractionation process utilizing reverse osmosis. Third International Conference on Leaf Protein Research. 1–7 October 1989, Pisa, Perugia, Viterbo, ItalyGoogle Scholar
  27. Fiechter A (1990) Plastics from bacteria and for bacteria: poly(β–hydroxyalkanoates) as natural, biocompatible, and biodegradable polyesters, Springer, New York, pp 77–93Google Scholar
  28. Fowler PA, McLauchlin AR, Hall LM (2003) The potential industrial uses of forage grasses including miscanthus. BioComposites Centre, University of Wales, Bangor, Gwynedd 2003,
  29. Gesellschaft Deutscher Chemiker (2010) Dechema, DGMK, VCI, Positionspapier Rohstoffbasis im Wandel, Frankfurt, Januar 2010,∼cmd∼shd∼docnr∼126682∼lastDokNr∼–1.htm
  30. Gesetz für den Vorrang erneuerbarer Energien (2000) Erneuerbare Energiegesetz, EEG/EnWGuaÄndG., 29 March 2000, BGBI, 305Google Scholar
  31. Hacking AJ (1986) The American wet milling industry. In: Economic aspects of biotechnology. Cambridge University Press, New York, pp 214–221Google Scholar
  32. Halasz L, Povoden G, Narodoslawsky M (2003) Process synthesis for renewable resources. Presented at PRES 03, Hamilton, CanadaGoogle Scholar
  33. Hector A, Schmid B, Beierkuhnlein C, Caldeira MC, Diemer M, Dimitrakopoulos PG, Finn JA, Freitas H, Giller PS, Good J, Harris R, Högberg P, Huss-Danell K, Joshi J, Jumpponen A, Körner C, Leadley PW, Loreau M, Minns A, Mulder CPH, O’Donovan G, Otway SJ, Pereira JS, Prinz A, Read DJ, Scherer-Lorenzen M, Schulze E-D, Siamantziouras A-SD, Spehn EM, Terry AC, Troumbis AY, Woodward FI, Yachi S, Lawton JH (1999) Plant diversity and productivity experiments in European grasslands. Science 286:1123–1127PubMedCrossRefGoogle Scholar
  34. IEEP (2004) Contribution to the background study agriculture. The Institute for European Environmental Policy, BrusselsGoogle Scholar
  35. Kamm B, Kamm M (1999) The green biorefinery—principles, technologies and products. In: Proceedings of 2nd International Symposium Green Biorefinery, 13–14 October 1999, SUSTAIN, Verein zur Koordination von Forschung über Nachhaltigkeit (Hrsg.), Feldbach, Austria, pp 46–69Google Scholar
  36. Kamm B, Kamm M (2004a) Principles of biorefineries. Appl Microbiol Biotechnol 64:137–145PubMedCrossRefGoogle Scholar
  37. Kamm B, Kamm M (2004b) Biorefinery systems, Chem Biochem Eng Q 18(1):1–6CrossRefGoogle Scholar
  38. Kamm B, Kamm M (2007) Biorefineries—multi product processes. In: Ulber R, Sell D (eds) White Biotechnology (Advances in biochemical engineering/biotechnology, vol 105). Springer, Heidelberg, pp 175–204CrossRefGoogle Scholar
  39. Kamm B, Kamm M, Soyez K (1998) (eds) Die Grüne Bioraffinerie/The Green Biorefinery. Technologiekonzept. Proceedings of the 1st International Symposium Green Biorefinery/Grüne Bioraffinerie, October 1997, Neuruppin, BerlinGoogle Scholar
  40. Kamm B, Kamm M, Richter K, Linke B, Starke I, Narodoslawsky M, Schwenke KD, Kromus S, Filler G, Kuhnt M, Lange B, Lubahn U, Segert A, Zierke S (2000a) Grüne BioRaffinerie Brandenburg-Beiträge zur Produkt- und Technologieentwicklung sowie Bewertung. Brandenburgische Umwelt Ber 8:260–269Google Scholar
  41. Kamm B, Kamm M, Richter K, Reimann W, Siebert A (2000b) Formation of aminium lactates in lactic acid fermentation, fermentative production of 1,4-piperazinium-(l,l)-dilactate and its use as starting material for the synthesis of dilactide (part 2). Acta Biotechnol 20:289–304CrossRefGoogle Scholar
  42. Kamm B, Venus J, Kamm M (2006) Principles of biorefineries—the role of biotechnology, the example lactic acid fermentation. In: Hearns EC (ed) Trends in biotechnology research. Nova Science, New York, pp 199–223Google Scholar
  43. Kamm B, Schönicke P, Kamm M (2009) Biorefining of green biomass—technical and energetic considerations. Clean 37(1):27–30Google Scholar
  44. Kim YH, Moon S-H (2001) Lactic acid recovery from fermentation broth using one-stage electro dialysis. J Chem Technol Biotechnol 76:169–178CrossRefGoogle Scholar
  45. Kromus S (2004) Die Grüne Bioraffinerie Österreich—Entwicklung eines integrierten Systems zur Nutzung von Grünlandbiomasse. Dissertation, TU GrazGoogle Scholar
  46. Kromus S, Wachter B, Koschuh W, Mandl M, Krotschek C, Narodoslawsky M (2004) The green biorefinery Austria—development of an integrated system for green biomass utilization. Chem Biochem Eng Q 18(1):13–19Google Scholar
  47. Kromus S, Kamm B, Kamm M, Fowler P, Narodoslawsky M (2006) In: Kamm B, Kamm M, Gruber P (eds) Biorefineries—industrial processes and products, vol 1. Wiley-VCH, Weinheim, pp 253–294Google Scholar
  48. Lavis G (1996) Evaporation. In: Schweitzer PA (ed) Handbook of separation techniques for chemical engineers, 3rd ed. McGraw–Hill, New YorkGoogle Scholar
  49. Mahro B, Timm M (2007) Potential of biowaste from the food industry as a biomass resource. Eng Life Sci 7(5):457–468CrossRefGoogle Scholar
  50. Morris DJ, Ahmed I (1992) The carbohydrate economy, making chemicals and industrial materials from plant matter. Institute of Local Self Reliance, Washington DCGoogle Scholar
  51. Narodoslawsky M (1999) (ed) Green biorefinery. In: Proceedings of 2nd International Symposium Green Biorefinery, 13–14 October 1999, Feldbach, Austria. Proceedings, SUSTAIN, Verein zur Koordination von Forschung über Nachhaltigkeit, Graz TU, AustriaGoogle Scholar
  52. Narodoslawsky M, Kromus S (2004) Development of decentral green biorefinery in Austria. In: Kamm B, Hempel M, Kamm M (eds) Biorefinica 2004, Proceedings and Papers, 27–28 October, Osnabrück, biopos, Teltow, p 24Google Scholar
  53. NREL (2005) National Renewable Energy Laboratory,
  54. National Research Council (2000) Biobased industrial products: priorities for research and commercialization, National Academic Press, Washington DCGoogle Scholar
  55. Nonato RV, Mantellato PE, Rossel CEV (2001) Integrated production of biodegradable plastic, sugar and ethanol. Appl Microbiol Biotechnol 57:1–5PubMedCrossRefGoogle Scholar
  56. Okkerse C, van Bekkum H (1999) From fossil to green. Green Chem 4:107–114CrossRefGoogle Scholar
  57. Patel M, Crank M, Dornburg V, Hermann B, Roes L, Hüsing B, Overbeek L, Terragni F, Recchia E (2006) Medium and long-term opportunities and risks of the biotechnological production of bulk chemicals from renewable resources. The BREW Projekt, prepared under the European Commission’s GROWTH Programme, Utrecht, pp 120–122Google Scholar
  58. Petrides DP, Cooney CL, Evans LB (1989) An introduction to biochemical process design. In: Shuler ML (ed) Chemical engineering problems in biotechnology. American Institute of Chemical Engineers, New YorkGoogle Scholar
  59. Pirie NW (1971) Leaf protein—its agronomy, preparation, quality, and use. Blackwell, OxfordGoogle Scholar
  60. Pirie NW (1987) Leaf protein and its by-products in human and animal nutrition. Cambridge University Press, UKGoogle Scholar
  61. Reismann HB (1988) Economic analysis of fermentation. CRC, Boca RatonGoogle Scholar
  62. Rexen F (1986) New industrial application possibilities for straw. Documentation of Svebio Phytochemistry Group (in Danish) [Fytokemi i Norden, Stockholm, Sweden, 1986–03–06] 12Google Scholar
  63. Ricci A et al (1989) Energy evaluation of a conventional wet green crop fractionation process. In: Proceedings of 3rd International Conference on Leaf Protein Research: Pisa, Perugia, Viterbo (Italy) 1–7 October 1989Google Scholar
  64. Ringpfeil M (2001) Biobased industrial products and biorefinery systems—Industrielle Zukunft des 21. Jahrhunderts?
  65. Rossel CEV, Mantellato PE, Agnelli AM, Nascimento J (2006) Sugar-based biorefinery—technology for an integrated production of poly(3–hydroxybutyrate), sugar and ethanol. In: Kamm B, Kamm M, Gruber P (eds) Biorefineries—industrial processes and products, vol 1. Wiley-VCH, Weinheim, pp 209–226Google Scholar
  66. Schidler S (2003) Technikfolgenabschätzung der Grünen Bioraffinerie, Teil I: Endbericht, Institut für Techikfolgen-Abschätzung, Österreichische Akademie der WissenschaftenGoogle Scholar
  67. Schidler S, Adensam H, Hofmann R, Kromus S, Will M (2003) Technikfolgenabschätzung der Grünen Bioraffinerie, Teil II: Materialsammlung, Institut für Technikfolgen-Abschätzung, Österreichische Akademie der WissenschaftenGoogle Scholar
  68. Schwenke K-D (1998) Das funktionelle Potential von Pflanzenproteinen. In: Kamm B, Kamm M, Soyez K (eds) Die Grüne Bioraffinerie; Beiträge zur ökologischen Technologie, vol 5. Gesellschaft für ökologische Technologie und Systemanalyse, Berlin, pp 185–195Google Scholar
  69. Singh N (1996) (ed) Green vegetation fractionation technology. Science, Lebanon, NHGoogle Scholar
  70. Tasaki I (1985) (ed) Recent advances in leaf protein research. In: Proceedings of the 2nd International Leaf Protein Research Conference. Nagoya, JapanGoogle Scholar
  71. Telek L, Graham HD (eds) (1983) Leaf protein concentrates. AVI, Westport, CNGoogle Scholar
  72. Thomsen MH, Bech D, Kiel P (2004) Manufacturing of stabilised brown juice for l-lysine production—from university lab scale over pilot scale to industrial production. Chem Biochem Eng Q 18(1):37–46Google Scholar
  73. Tiffany DG (2007) Economic comparison of ethanol production from corn stover and grain. AURI Energy Users Conference, 13 March 2007, Redwood Falls, MNGoogle Scholar
  74. Tullo A (2005) Renewable materials, two pacts may help spur biomass plastics. Chem Eng News, 28 March 2005, http://www.CEN–
  75. US DOE (2005) 1st International Biorefinery Workshop, July 20 and 21, US Department of Energy, Washington D.C.;
  76. US Congress (2000) Biomass research and development, Act of 2000, JuneGoogle Scholar
  77. US President (1999) Developing and promoting biobased products and bioenergy. Executive Order 13101/13134, William J. Clinton, The White House, 12 August 1999,–20/20BioText.html
  78. Van Dyne DL (1999) Estimating the economic feasibility of converting ligno-cellulosic feedstocks to ethanol and higher value chemicals under the refinery concept: a phase II study, OR22072-58. University of MissouriGoogle Scholar
  79. Van Dyne DL, Blasé MG, Clements LD (1999) A strategy for returning agriculture and rural America to long-term full employment using biomass refineries. In: Janeck J (ed) Perspectives on new crops and new uses. ASHS, Alexandria, VA, pp 114–123Google Scholar
  80. Vink ETH, Rabago KR, Glassner DA, Gruber PR (2003) Applications of life cycle assessment to NatureWorksTMpolylactide (PLA) production. Polym Degrad Stability 80:403–419CrossRefGoogle Scholar
  81. Vorlop KD, Willke Th, Prüße U (2006) Biocatalytic and catalytic routes for the production of bulk and fine chemicals from renewable resources, In: Kamm B, Kamm M, Gruber P (eds) Biorefineries—industrial processes and products, vol 2. Wiley-VCH, Weinheim, pp 385–406Google Scholar
  82. Webb C, Koutinas AA, Wang R (2004) Developing a sustainable bioprocessing strategy based on a generic feedstock. Adv Biochem Eng Biotechnol 87:195–268PubMedGoogle Scholar
  83. Werpy T, Petersen G (eds) (2004) Top value chemicals under the refinery concept: a phase II study. US Department of Energy, Office of Scientific and Technical Information. No.: DOE/GO-102004-1992, Google Scholar
  84. Werpy T, Frye J, Holladay J (2006) Succinic acid—a model building block for chemical production from renewable resources. In: Kamm B, Kamm M, Gruber P (eds) Biorefineries—industrial processes and products, vol 2. Wiley, Weinheim, pp 367–379Google Scholar
  85. White DH, Wolf D (1988) In: Bridgewater AV, Kuester JL (eds) Research in thermochemical biomass conversion. Elsevier, New YorkGoogle Scholar
  86. Wilkins RJ (1977) (ed) Green crop fractionation. British Grassland Society, Hurley, Maidenhead, UKGoogle Scholar
  87. Willke Th, Vorlop KD (2004) Industrial bioconversion of renewable resources as an alternative to conventional chemistry. Appl Microbiol Biotechnol 66(2):131–142PubMedCrossRefGoogle Scholar
  88. Wittmeyer D (2009) EU lead market initiative in the frame of European technology platform for sustainable chemistry. Deutscher Bioraffineriekongress, 8 July 2009, Industrieclub Potsdam,
  89. Zeikus JG, Jain MK, Elankovan P (1999) Biotechnology of succinic acid production and markets for derived industrial products. Appl Microbiol Biotechnol 51:545–552CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Research Institute Bioactive Polymer Systems e.V.Brandenburg University of Technology CottbusTeltowGermany

Personalised recommendations