Skip to main content

Integrated Biorefineries—A Bottom-Up Approach to Biomass Fractionation

  • Chapter
  • First Online:
Plant Biotechnology for Sustainable Production of Energy and Co-products

Part of the book series: Biotechnology in Agriculture and Forestry ((AGRICULTURE,volume 66))

  • 1611 Accesses

Abstract

The development of biorefineries represents the key to accessing the integrated production of food, feed, chemicals, materials, goods, fuels and energy in the future. Biorefineries combine the required technologies for biogenic raw materials from agriculture and forestry with those of intermediate and final products. The specific focus of this chapter is the combination of green agriculture with physical and biotechnological processes for production of proteins as well as the platform chemicals lactic acid and lysine. The mass and energy flows (steam and electricity) of the biorefining of green biomass into these platform chemicals, proteins, and feed as well as biogas from residues are given. Economic and ecologic aspects for the cultivation of green biomass and the production of platform chemicals are described.

Dedicated to Michael Kamm, Founder of biorefinery.de GmbH

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Annetts JE, Audsley E (2003) Modelling the value of a rural biorefinery. Part I: the model description. Part II: analysis and implications. Agric Syst 76:39–76

    Article  Google Scholar 

  • Audsley E, Sells JE (1997) Determining the profitability of a whole crop biorefinery. In: Campbell GM, Webb C, McKee SL (eds) Cereals—novel uses and processes. Plenum, New York, pp 191–294

    Google Scholar 

  • Bartholomew WH, Reismann HB (1979) Economics of fermentation processes. In: Peppler HJ, Perlman D (eds) Microbial technology, 2nd edn, vol 2. Academic, New York

    Google Scholar 

  • BIO (2004) New biotech tools for a cleaner environment—industrial biotechnology for pollution prevention. Resource Conservation and Cost Reduction Biotechnology Industry Organisation; http://www.bio.org/ind/pubs/cleaner2004/cleanerReport.pdf

    Google Scholar 

  • Biomasse Action plan (2005) http://www.euractiv.com/en/energy/biomass–action–plan/article–155362

  • Bohlmann G (2002) Several reports on White Biotechnology processes. Stanford Research International, Menlo Park, CA

    Google Scholar 

  • Bozell JJ (2004) Alternative feedstocks for bioprocessing. In: Goodman RM (ed) Encyclopedia of plant and crop science. Dekker, New York, doi: 10.1081/E-EPCS-120010437

    Google Scholar 

  • BRDI (2006) Vision for bioenergy and biobased products in the United States. Biomass Research and Development Initiative. http://www1.eere.energy.gov/biomass/pdfs/final_2006_vision.pdf

  • Bruhn HD, Straub RJ, Koegel RG (1978) A systems approach to the production of plant juice protein concentrate. In: Proceedings of the International Grain and Forage Harvesting Conference, American Society of Agricultural Engineers, St. Joseph, MI

    Google Scholar 

  • BTAC (2002a) Roadmap for biomass technologies in the United States. Biomass Technical Advisory Committee, Washington DC. http://www.bioproducts–bioenergy.gov/pdfs/FinalBiomassRoadmap.pdf

  • BTAC (2002b) Vision for bioenergy and biobased products in the United States, Biomass Technical Advisory Committee, Washington DC, http://www.bioproducts–bioenergy.gov/pdfs/BioVision_03_Web.pdf

    Google Scholar 

  • BTAC (2007) Roadmap for bioenergy and biobased products in the United States, October 2006. Biomass R&D Technical Advisory Board, http://www1.eere.energy.gov/biomass/pdfs/obp_roadmapv2_web.pdf

  • Bundesministerium für Ernährung, Landwirtschaft und Verbraucherschutz (2009) Aktionsplan der Bundesregierung zur stofflichen Nutzung nachwachsender Rohstoffe. BT–Drucksache 16/14061 vom 03.09.2009

    Google Scholar 

  • Carlsson R (1983) Leaf protein concentrate from plant sources in temperate climates. In: Telek L, Graham HD (eds) Leaf protein concentrates. AVI, Westport, pp 52–80

    Google Scholar 

  • Carlsson R (1994) Sustainable primary production. Green crop fractionation: effects of species, growth conditions, and physiological development. In: Pessarakli M (ed) Handbook of plant and crop physiology. Dekker, NY, pp 941–963

    Google Scholar 

  • Carlsson R (1998) Status quo of the utilization of green biomass. In: Soyez S, Kamm B, Kamm M (eds) The green biorefinery. Proceedings of 1st International Green Biorefinery Conferenze, Neuruppin, Germany, 1997, GÖT, Berlin, ISBN 3–929672–06–5

    Google Scholar 

  • Coombs J, Hall K (1997) The potential of cereals as industrial raw materials: legal technical, commercial considerations In: Campbell GM, Webb C, McKee SL (eds) Cereals—novel uses and processes. Plenum, New York, pp 1–12

    Google Scholar 

  • Datta R, Tsai S-P (1997) Lactic acid production and potential uses: a technology and economics assessment. In: Saha BC, Woodward J (eds) Fuels and chemicals from biomass. American Chemical Society, Washington DC 1997, p 224

    Chapter  Google Scholar 

  • DuPont (2004) US patent 5 686 276, http://www.dupont.com/sorona/home.html

  • Elements Degussa Science Newsletter (2005) 7:35

    Google Scholar 

  • ETPSC (2005) European Technology Platform for Sustainable Chemistry, Industrial Biotechnology Section, http://www.suschem.org

  • EU-Projekt BIOPOL (2007) Specific Support Action, Priority Scientific Support to Policies, http://www.biorefinery.nl/biopol

  • EU-Projekt Biorefinery-Euroview (2007) Specific Support Action, Priority Scientific Support to Policies, http://www.biorefinery–euroview.eu

  • EuropaBio (2003) White biotechnology—gateway to a more sustainable future. EuropaBio, Lyon

    Google Scholar 

  • European Parliament and Council (2003) Directive 2003/30/EC on the promotion of the use of biofuels or other renewable fuels for transport; Official Journal of the European Union L123/42, 17.05.2003, Brussels

    Google Scholar 

  • Fantozzi P (1989) (ed) Proceedings of the 3rd International Leaf Protein Research Conference, Pisa–Perugia–Viterbo, Italy

    Google Scholar 

  • Favati F et al (1989) Energy evaluation of a wet green crop fractionation process utilizing reverse osmosis. Third International Conference on Leaf Protein Research. 1–7 October 1989, Pisa, Perugia, Viterbo, Italy

    Google Scholar 

  • Fiechter A (1990) Plastics from bacteria and for bacteria: poly(β–hydroxyalkanoates) as natural, biocompatible, and biodegradable polyesters, Springer, New York, pp 77–93

    Google Scholar 

  • Fowler PA, McLauchlin AR, Hall LM (2003) The potential industrial uses of forage grasses including miscanthus. BioComposites Centre, University of Wales, Bangor, Gwynedd 2003, http://www.nnfcc.co.uk/library/reports/download.cfm?id=60

  • Gesellschaft Deutscher Chemiker (2010) Dechema, DGMK, VCI, Positionspapier Rohstoffbasis im Wandel, Frankfurt, Januar 2010, http://www.vci.de/default∼cmd∼shd∼docnr∼126682∼lastDokNr∼–1.htm

  • Gesetz für den Vorrang erneuerbarer Energien (2000) Erneuerbare Energiegesetz, EEG/EnWGuaÄndG., 29 March 2000, BGBI, 305

    Google Scholar 

  • Hacking AJ (1986) The American wet milling industry. In: Economic aspects of biotechnology. Cambridge University Press, New York, pp 214–221

    Google Scholar 

  • Halasz L, Povoden G, Narodoslawsky M (2003) Process synthesis for renewable resources. Presented at PRES 03, Hamilton, Canada

    Google Scholar 

  • Hector A, Schmid B, Beierkuhnlein C, Caldeira MC, Diemer M, Dimitrakopoulos PG, Finn JA, Freitas H, Giller PS, Good J, Harris R, Högberg P, Huss-Danell K, Joshi J, Jumpponen A, Körner C, Leadley PW, Loreau M, Minns A, Mulder CPH, O’Donovan G, Otway SJ, Pereira JS, Prinz A, Read DJ, Scherer-Lorenzen M, Schulze E-D, Siamantziouras A-SD, Spehn EM, Terry AC, Troumbis AY, Woodward FI, Yachi S, Lawton JH (1999) Plant diversity and productivity experiments in European grasslands. Science 286:1123–1127

    Article  PubMed  CAS  Google Scholar 

  • IEEP (2004) Contribution to the background study agriculture. The Institute for European Environmental Policy, Brussels

    Google Scholar 

  • Kamm B, Kamm M (1999) The green biorefinery—principles, technologies and products. In: Proceedings of 2nd International Symposium Green Biorefinery, 13–14 October 1999, SUSTAIN, Verein zur Koordination von Forschung über Nachhaltigkeit (Hrsg.), Feldbach, Austria, pp 46–69

    Google Scholar 

  • Kamm B, Kamm M (2004a) Principles of biorefineries. Appl Microbiol Biotechnol 64:137–145

    Article  PubMed  CAS  Google Scholar 

  • Kamm B, Kamm M (2004b) Biorefinery systems, Chem Biochem Eng Q 18(1):1–6

    Article  CAS  Google Scholar 

  • Kamm B, Kamm M (2007) Biorefineries—multi product processes. In: Ulber R, Sell D (eds) White Biotechnology (Advances in biochemical engineering/biotechnology, vol 105). Springer, Heidelberg, pp 175–204

    Chapter  Google Scholar 

  • Kamm B, Kamm M, Soyez K (1998) (eds) Die Grüne Bioraffinerie/The Green Biorefinery. Technologiekonzept. Proceedings of the 1st International Symposium Green Biorefinery/Grüne Bioraffinerie, October 1997, Neuruppin, Berlin

    Google Scholar 

  • Kamm B, Kamm M, Richter K, Linke B, Starke I, Narodoslawsky M, Schwenke KD, Kromus S, Filler G, Kuhnt M, Lange B, Lubahn U, Segert A, Zierke S (2000a) Grüne BioRaffinerie Brandenburg-Beiträge zur Produkt- und Technologieentwicklung sowie Bewertung. Brandenburgische Umwelt Ber 8:260–269

    Google Scholar 

  • Kamm B, Kamm M, Richter K, Reimann W, Siebert A (2000b) Formation of aminium lactates in lactic acid fermentation, fermentative production of 1,4-piperazinium-(l,l)-dilactate and its use as starting material for the synthesis of dilactide (part 2). Acta Biotechnol 20:289–304

    Article  CAS  Google Scholar 

  • Kamm B, Venus J, Kamm M (2006) Principles of biorefineries—the role of biotechnology, the example lactic acid fermentation. In: Hearns EC (ed) Trends in biotechnology research. Nova Science, New York, pp 199–223

    Google Scholar 

  • Kamm B, Schönicke P, Kamm M (2009) Biorefining of green biomass—technical and energetic considerations. Clean 37(1):27–30

    CAS  Google Scholar 

  • Kim YH, Moon S-H (2001) Lactic acid recovery from fermentation broth using one-stage electro dialysis. J Chem Technol Biotechnol 76:169–178

    Article  CAS  Google Scholar 

  • Kromus S (2004) Die Grüne Bioraffinerie Österreich—Entwicklung eines integrierten Systems zur Nutzung von Grünlandbiomasse. Dissertation, TU Graz

    Google Scholar 

  • Kromus S, Wachter B, Koschuh W, Mandl M, Krotschek C, Narodoslawsky M (2004) The green biorefinery Austria—development of an integrated system for green biomass utilization. Chem Biochem Eng Q 18(1):13–19

    Google Scholar 

  • Kromus S, Kamm B, Kamm M, Fowler P, Narodoslawsky M (2006) In: Kamm B, Kamm M, Gruber P (eds) Biorefineries—industrial processes and products, vol 1. Wiley-VCH, Weinheim, pp 253–294

    Google Scholar 

  • Lavis G (1996) Evaporation. In: Schweitzer PA (ed) Handbook of separation techniques for chemical engineers, 3rd ed. McGraw–Hill, New York

    Google Scholar 

  • Mahro B, Timm M (2007) Potential of biowaste from the food industry as a biomass resource. Eng Life Sci 7(5):457–468

    Article  CAS  Google Scholar 

  • Morris DJ, Ahmed I (1992) The carbohydrate economy, making chemicals and industrial materials from plant matter. Institute of Local Self Reliance, Washington DC

    Google Scholar 

  • Narodoslawsky M (1999) (ed) Green biorefinery. In: Proceedings of 2nd International Symposium Green Biorefinery, 13–14 October 1999, Feldbach, Austria. Proceedings, SUSTAIN, Verein zur Koordination von Forschung über Nachhaltigkeit, Graz TU, Austria

    Google Scholar 

  • Narodoslawsky M, Kromus S (2004) Development of decentral green biorefinery in Austria. In: Kamm B, Hempel M, Kamm M (eds) Biorefinica 2004, Proceedings and Papers, 27–28 October, Osnabrück, biopos, Teltow, p 24

    Google Scholar 

  • NREL (2005) National Renewable Energy Laboratory, http://www.nrel.gov/biomass/biorefinery.htm

  • National Research Council (2000) Biobased industrial products: priorities for research and commercialization, National Academic Press, Washington DC

    Google Scholar 

  • Nonato RV, Mantellato PE, Rossel CEV (2001) Integrated production of biodegradable plastic, sugar and ethanol. Appl Microbiol Biotechnol 57:1–5

    Article  PubMed  CAS  Google Scholar 

  • Okkerse C, van Bekkum H (1999) From fossil to green. Green Chem 4:107–114

    Article  Google Scholar 

  • Patel M, Crank M, Dornburg V, Hermann B, Roes L, Hüsing B, Overbeek L, Terragni F, Recchia E (2006) Medium and long-term opportunities and risks of the biotechnological production of bulk chemicals from renewable resources. The BREW Projekt, prepared under the European Commission’s GROWTH Programme, Utrecht, pp 120–122

    Google Scholar 

  • Petrides DP, Cooney CL, Evans LB (1989) An introduction to biochemical process design. In: Shuler ML (ed) Chemical engineering problems in biotechnology. American Institute of Chemical Engineers, New York

    Google Scholar 

  • Pirie NW (1971) Leaf protein—its agronomy, preparation, quality, and use. Blackwell, Oxford

    Google Scholar 

  • Pirie NW (1987) Leaf protein and its by-products in human and animal nutrition. Cambridge University Press, UK

    Google Scholar 

  • Reismann HB (1988) Economic analysis of fermentation. CRC, Boca Raton

    Google Scholar 

  • Rexen F (1986) New industrial application possibilities for straw. Documentation of Svebio Phytochemistry Group (in Danish) [Fytokemi i Norden, Stockholm, Sweden, 1986–03–06] 12

    Google Scholar 

  • Ricci A et al (1989) Energy evaluation of a conventional wet green crop fractionation process. In: Proceedings of 3rd International Conference on Leaf Protein Research: Pisa, Perugia, Viterbo (Italy) 1–7 October 1989

    Google Scholar 

  • Ringpfeil M (2001) Biobased industrial products and biorefinery systems—Industrielle Zukunft des 21. Jahrhunderts? http://www.biopract.de

  • Rossel CEV, Mantellato PE, Agnelli AM, Nascimento J (2006) Sugar-based biorefinery—technology for an integrated production of poly(3–hydroxybutyrate), sugar and ethanol. In: Kamm B, Kamm M, Gruber P (eds) Biorefineries—industrial processes and products, vol 1. Wiley-VCH, Weinheim, pp 209–226

    Google Scholar 

  • Schidler S (2003) Technikfolgenabschätzung der Grünen Bioraffinerie, Teil I: Endbericht, Institut für Techikfolgen-Abschätzung, Österreichische Akademie der Wissenschaften

    Google Scholar 

  • Schidler S, Adensam H, Hofmann R, Kromus S, Will M (2003) Technikfolgenabschätzung der Grünen Bioraffinerie, Teil II: Materialsammlung, Institut für Technikfolgen-Abschätzung, Österreichische Akademie der Wissenschaften

    Google Scholar 

  • Schwenke K-D (1998) Das funktionelle Potential von Pflanzenproteinen. In: Kamm B, Kamm M, Soyez K (eds) Die Grüne Bioraffinerie; Beiträge zur ökologischen Technologie, vol 5. Gesellschaft für ökologische Technologie und Systemanalyse, Berlin, pp 185–195

    Google Scholar 

  • Singh N (1996) (ed) Green vegetation fractionation technology. Science, Lebanon, NH

    Google Scholar 

  • Tasaki I (1985) (ed) Recent advances in leaf protein research. In: Proceedings of the 2nd International Leaf Protein Research Conference. Nagoya, Japan

    Google Scholar 

  • Telek L, Graham HD (eds) (1983) Leaf protein concentrates. AVI, Westport, CN

    Google Scholar 

  • Thomsen MH, Bech D, Kiel P (2004) Manufacturing of stabilised brown juice for l-lysine production—from university lab scale over pilot scale to industrial production. Chem Biochem Eng Q 18(1):37–46

    CAS  Google Scholar 

  • Tiffany DG (2007) Economic comparison of ethanol production from corn stover and grain. AURI Energy Users Conference, 13 March 2007, Redwood Falls, MN

    Google Scholar 

  • Tullo A (2005) Renewable materials, two pacts may help spur biomass plastics. Chem Eng News, 28 March 2005, http://www.CEN–ONLINE.org

  • US DOE (2005) 1st International Biorefinery Workshop, July 20 and 21, US Department of Energy, Washington D.C.; http://www.biorefineryworkshop.com

  • US Congress (2000) Biomass research and development, Act of 2000, June

    Google Scholar 

  • US President (1999) Developing and promoting biobased products and bioenergy. Executive Order 13101/13134, William J. Clinton, The White House, 12 August 1999, http://www.newuse.org/EG/EG–20/20BioText.html

  • Van Dyne DL (1999) Estimating the economic feasibility of converting ligno-cellulosic feedstocks to ethanol and higher value chemicals under the refinery concept: a phase II study, OR22072-58. University of Missouri

    Google Scholar 

  • Van Dyne DL, Blasé MG, Clements LD (1999) A strategy for returning agriculture and rural America to long-term full employment using biomass refineries. In: Janeck J (ed) Perspectives on new crops and new uses. ASHS, Alexandria, VA, pp 114–123

    Google Scholar 

  • Vink ETH, Rabago KR, Glassner DA, Gruber PR (2003) Applications of life cycle assessment to NatureWorksTMpolylactide (PLA) production. Polym Degrad Stability 80:403–419

    Article  CAS  Google Scholar 

  • Vorlop KD, Willke Th, Prüße U (2006) Biocatalytic and catalytic routes for the production of bulk and fine chemicals from renewable resources, In: Kamm B, Kamm M, Gruber P (eds) Biorefineries—industrial processes and products, vol 2. Wiley-VCH, Weinheim, pp 385–406

    Google Scholar 

  • Webb C, Koutinas AA, Wang R (2004) Developing a sustainable bioprocessing strategy based on a generic feedstock. Adv Biochem Eng Biotechnol 87:195–268

    PubMed  CAS  Google Scholar 

  • Werpy T, Petersen G (eds) (2004) Top value chemicals under the refinery concept: a phase II study. US Department of Energy, Office of Scientific and Technical Information. No.: DOE/GO-102004-1992, http://www.osti.gov/bridge

    Google Scholar 

  • Werpy T, Frye J, Holladay J (2006) Succinic acid—a model building block for chemical production from renewable resources. In: Kamm B, Kamm M, Gruber P (eds) Biorefineries—industrial processes and products, vol 2. Wiley, Weinheim, pp 367–379

    Google Scholar 

  • White DH, Wolf D (1988) In: Bridgewater AV, Kuester JL (eds) Research in thermochemical biomass conversion. Elsevier, New York

    Google Scholar 

  • Wilkins RJ (1977) (ed) Green crop fractionation. British Grassland Society, Hurley, Maidenhead, UK

    Google Scholar 

  • Willke Th, Vorlop KD (2004) Industrial bioconversion of renewable resources as an alternative to conventional chemistry. Appl Microbiol Biotechnol 66(2):131–142

    Article  PubMed  CAS  Google Scholar 

  • Wittmeyer D (2009) EU lead market initiative in the frame of European technology platform for sustainable chemistry. Deutscher Bioraffineriekongress, 8 July 2009, Industrieclub Potsdam, http://www.biorefinica.de

  • Zeikus JG, Jain MK, Elankovan P (1999) Biotechnology of succinic acid production and markets for derived industrial products. Appl Microbiol Biotechnol 51:545–552

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Birgit Kamm .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kamm, B. (2010). Integrated Biorefineries—A Bottom-Up Approach to Biomass Fractionation. In: Mascia, P., Scheffran, J., Widholm, J. (eds) Plant Biotechnology for Sustainable Production of Energy and Co-products. Biotechnology in Agriculture and Forestry, vol 66. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13440-1_12

Download citation

Publish with us

Policies and ethics