Advertisement

Gene Flow in Genetically Engineered Perennial Grasses: Lessons for Modification of Dedicated Bioenergy Crops

  • Albert P. KauschEmail author
  • Joel Hague
  • Melvin Oliver
  • Lidia S. Watrud
  • Carol Mallory-Smith
  • Virgil Meier
  • C. Neal StewartJr
Chapter
Part of the Biotechnology in Agriculture and Forestry book series (AGRICULTURE, volume 66)

Abstract

This chapter was initiated from a symposium and workshop on the scientific advances, issues and bioethics of gene confinement in genetically modified grasses conducted on 13–14 May 2005 at Yale University in New Haven, CT. Genetic modification of dedicated bioenergy crops such as switchgrass will play a major role in crop improvement for a wide range of beneficial traits specific to biofuels. One obstacle that arises regarding transgenic improvement of perennials used for biofuels is the propensity of these plants to be open pollinated, with the undesirable capacity of outcrossing to non-transgenic and wild relative species. We examine previous work on pollen-mediated and seed-mediated gene flow of genetically modified grasses, in particular herbicide resistant traits, relevant to gene flow in grasses providing a perspective on the implementation of this technology for improvement of perennial bioenergy crops.

Keywords

Gene Flow Control District Genetically Engineer Crop Colonial Bentgrass Transgenic Switchgrass 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Disclaimer:

Mention of trade names does not imply endorsement of the commercial products that are mentioned nor do the views expressed herein necessarily reflect the views of USDA or USEPA.

References

  1. Aldhous P (2003) Time to choose. Nature 425:655CrossRefGoogle Scholar
  2. AOSA (2002) Rules for testing seeds. Association of Official Seed Analysts, Stillwater, OKGoogle Scholar
  3. Bae TW, Vanjildorj E, Song SY, Nishiguchi S, Yang SS, Song IJ, Chandrasekhar T, Kang TW, Kim JI, Koh YJ, Park SY, Lee J, Lee Y-E, Ryu KH, Riu KZ, Song P-S, Lee HY (2008) Environmental risk assessment of genetically engineered herbicide-tolerant Zoysia japonica. J Environ Qual 37:207–218PubMedCrossRefGoogle Scholar
  4. Belanger FC, Meagher TR, Day PR, Plumley K, Meyer WA (2003) Interspecific hybridization between Agrostis stolonifera and related Agrostis species under field conditions. Crop Sci 43: 240–246CrossRefGoogle Scholar
  5. Bucchini L, Goldman LR (2002) Starlink corn: a risk analysis. Environ Health Perspect 110: 5–13PubMedCrossRefGoogle Scholar
  6. Christoffer PM (2003) Transgenic glyphosate resistant creeping bentgrass: studies in pollen-mediated transgene flow. Masters Thesis, Washington State UniversityGoogle Scholar
  7. Colwell RK, Norse EA, Pimentel D, Sharples FE, Simberloff D (1985) Genetic engineering in agriculture. Science 229:111–112PubMedCrossRefGoogle Scholar
  8. Dale PJ, Clarke B, Fontes EMG (2002) Potential for the environmental impact of transgenic crops. Nat Biotechnol 20:567–574PubMedCrossRefGoogle Scholar
  9. Daniell H (2002) Molecular strategies for gene containment in transgenic crops. Nat Biotechnol 20:581–586Google Scholar
  10. Eastham K, Sweet J (2002) Genetically modified organisms (GEOs): the significance of gene flow through pollen transfer. European Environment Agency, CopenhagenGoogle Scholar
  11. Ellstrand NC, Hoffman CA (1990) Hybridization as an avenue of escape for engineered genes—strategies for risk reduction. Bioscience 40:438–442CrossRefGoogle Scholar
  12. Ellstrand NC, Prentice HC, Hancock JF (1999) Gene flow and introgression from domesticated plants into their wild relatives. Annu Rev Ecol Syst 40:434–437Google Scholar
  13. Fei S, Nelson E (2003) Estimation of pollen viability, shedding pattern, and longevity of creeping bentgrass on artificial media. Crop Sci 43:2177–2181CrossRefGoogle Scholar
  14. Fei S, Nelson E (2004) Greenhouse evaluation of fitness-related reproductive traits in Roundup®-tolerant transgenic creeping bentgrass (Agrostis Stolonifera L.). In Vitro Cell Dev Biol Plant 40:266–273CrossRefGoogle Scholar
  15. Giles J (2003) Damned if they do, damned if they don’t. Nature 425:656–657PubMedCrossRefGoogle Scholar
  16. Luo K, Duan H, Zhao D, Zheng X, Deng W, Chen Y, Stewart CN, McAvoy R, Jiang X, Wu Y, He A, Pei Y, Li Y (2007) ’GE-gene-deletor’: fused loxP-FRT recognition sequences dramatically improve the efficiency of FLP or CRE recombinase on transgene excision from pollen and seed of tobacco plants. Plant Biotechnol J 5:263–374PubMedCrossRefGoogle Scholar
  17. Macilwain C (2005) US launches probe into sales of unapproved transgenic corn. Nature 434:423PubMedCrossRefGoogle Scholar
  18. Mallory-Smith C, Zapiola ML (2008) Gene flow from glyphosate-resistant crops. Pest Manag Sci 64:428–440PubMedCrossRefGoogle Scholar
  19. Marvier M, Acker RCV (2005) Can crop transgenes be kept on a leash? Front Ecol Environ 3:99–106CrossRefGoogle Scholar
  20. Ortiz-García S, Ezcurra E, Schoel B, Acevedo F, Soberón J, Snow AA (2005) Absence of detectable transgenes in local landraces of maize in Oaxaca, Mexico (2003–2004). Proc Natl Acad Sci USA 102:12338–12343PubMedCrossRefGoogle Scholar
  21. Pfender W, Graw R, Bradley W, Carney M, Maxwell L (2007) Emission rates, survival, and modeled dispersal of viable pollen of creeping bentgrass. Crop Sci 47:2529–2539CrossRefGoogle Scholar
  22. Piñeyro-Nelson A, Van Heerwaarden J, Perales HR, Serratos-Herández A, Rangel A, Hufford MB, Gepts P, Garay-Arroyo A, Rivera-Bustamante R, Álvarez-Buylla ER (2009) Transgenes in Mexican maize: molecular evidence and methodological considerations for GEO detection in landrace populations. Mol Ecol 18:750–761PubMedCrossRefGoogle Scholar
  23. Quist D, Chapela IH (2001) Transgenic DNA introgressed into traditional maize landraces in Oaxaca, Mexico. Nature 414:541–543CrossRefGoogle Scholar
  24. Reichman JR, Watrud LS, Lee EH, Burdick CA, Bollman MA, Storm MJ, King GA, Mallory-Smith C (2006) Establishment of transgenic herbicide-resistant creeping bentgrass (Agrostis stolonifera L.) in nonagronomic habitats. Mol Ecol 15:4243–4255PubMedCrossRefGoogle Scholar
  25. Rogers HJ, Parkes HC (1995) Transgenic plants and the environment. J Exp Bot 46:467–488CrossRefGoogle Scholar
  26. Snow AA (2009) Unwanted transgenes re-discovered in oaxacan maize. Mol Ecol 18:569–571PubMedCrossRefGoogle Scholar
  27. Stewart CN (2007) Biofuels and biocontainment. Nat Biotechnol 25:283–284PubMedCrossRefGoogle Scholar
  28. Tiedje JM, Colwell RK, Grossman YL, Hodson RE, Lenski RE, Mack RN, Regal PJ (1989) The release of transgenic plants into agriculture. Ecology 70:298–315CrossRefGoogle Scholar
  29. Tsuchiya T, Toriyama K, Yoshikawa M, Ejiri S-i, Hinata K (1995) Tapetum-specific expression of the gene for an endo-β-1,3-glucanase causes male sterility in transgenic tobacco. Plant Cell Physiol 36:487–494PubMedGoogle Scholar
  30. USDA-NASS (2006) Oregon agriculture and fisheries statistics. US Department of Agriculture National Statistics Service & Oregon Department of AgricultureGoogle Scholar
  31. Van de Water PK, Watrud LS, Lee EH, Burdick C, King GA (2007) Long-distance GE pollen movement of creeping bentgrass using modeled wind trajectory analysis. Ecol Appl 17:1244–1256PubMedCrossRefGoogle Scholar
  32. Watrud LS, Lee EH, Fairbrother A, Burdick C, Reichman JR, Bollman M, Storm M, King G, van De Water PK (2004) Evidence for landscape-level, pollen-mediated gene flow from genetically modified creeping bentgrass with CP4 EPSPS as a marker. Proc Natl Acad Sci USA 101:14533–14538PubMedCrossRefGoogle Scholar
  33. Wipff JK, Fricker C (2001) Gene flow from transgenic creeping bentgrass (Agrostis stolonifera L.) in the Willamette Valley, Oregon. Int Turfgrass Soc Res J 9:224–242Google Scholar
  34. Wrubel RP, Krimsky S, Wetzler RE (1992) Field testing transgenic plants. BioScience 42:280–289CrossRefGoogle Scholar
  35. Zapiola ML, Mallory-Smith CA, Thompson JH, Rue LJ, Campbell CK, Butler MD (2007) Gene escape from glyphosate-resistant creeping bentgrass fields: past, present, and future. Proceedings of the Western Society of Weed Science, Abstract 82Google Scholar
  36. Zapiola ML, Campbell CK, Butler MD, Mallory-Smith CA (2008) Escape and establishment of transgenic glyphosate-resistant creeping bentgrass Agrostis stolonifera in Oregon, USA: a 4-year study. J Appl Ecol 45:486–494CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Albert P. Kausch
    • 1
    Email author
  • Joel Hague
    • 1
  • Melvin Oliver
    • 2
  • Lidia S. Watrud
    • 3
  • Carol Mallory-Smith
    • 4
  • Virgil Meier
    • 5
  • C. Neal StewartJr
    • 6
  1. 1.University of Rhode IslandWest KingstonUSA
  2. 2.USDA-ARS Plant Genetics UnitUniversity of MissouriColumbiaUSA
  3. 3.US Environmental Protection AgencyUS EPA NHEERL WEDCorvallisUSA
  4. 4.Oregon State University Department of Crop and Soil ScienceOregon State University CorvallisCorvallisUSA
  5. 5.USDA APHISBiotechnology Regulatory ServicesRiverdaleUSA
  6. 6.Racheff Chair of Excellence in Plant Molecular GeneticsUniversity of TennesseeKnoxvilleUSA

Personalised recommendations