Skip to main content

Physiological Roles for the PIP Family of Plant Aquaporins

  • Chapter
  • First Online:
The Plant Plasma Membrane

Part of the book series: Plant Cell Monographs ((CELLMONO,volume 19))

Abstract

Aquaporins are a class of intrinsic membrane proteins that are primarily associated with water movement across membranes. In plants, biophysical studies indicated that water fluxes could not be explained by simple diffusive movement. The discovery of aquaporins that facilitate water movement across membranes in other organisms rapidly led to the identification of this class of proteins in plants. The large number of aquaporin genes identified in plant genomes compared to those from other organisms suggests that they play a major role in plant water relations. However, plant aquaporins also facilitate the transport of small solutes such as glycerol, silicon, ammonium, urea, boric acid, CO2, arsenite, and hydrogen peroxide within and between cells. Here, the aquaporin-like proteins that function on the plant plasma membrane are reviewed in the context of their apparent role in plant adaptive evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aharon R, Shahak Y, Wininger S, Bendov R, Kapulnik Y, Galili G (2003) Overexpression of a plasma membrane aquaporin in transgenic tobacco improves plant vigor under favorable growth conditions but not under drought or salt stress. Plant Cell 15:439–447

    PubMed  CAS  Google Scholar 

  • Alexandersson E, Fravsse L, Sjovall-Larsen S, Gustavsson S, Fellert M, Karlsson M, Johamsom U, Kjellbom P (2005) Whole gene family expression and drought stress regulation of aquaporins. Plant Mol Biol 59:469–484

    PubMed  CAS  Google Scholar 

  • Alleva K, Niemietz CM, Sutka M, Maurel C, Parisi M, Tyerman SD, Amodeo G (2006) Plasma membrane of Beta vulgaris storage root shows high mater channel activity regulated by cytoplasmic pH and a dual range of calcium concentrations. J Exp Bot 57:609–621

    PubMed  CAS  Google Scholar 

  • Aroca R, Amodeo G, Fernádez-Illescas S, Herman EH, Chaumont F, Chrispeels MJ (2005) The role of aquaporins and membrane damage in chilling and hydrogen peroxide induced changes in the hydraulic conductance of maize roots. Plant Physiol 137:341–353

    PubMed  CAS  Google Scholar 

  • Azad AK, Sawa Y, Ishikawa T, Shibata H (2004) Phosphorylation of plasma membrane aquaporin regulates temperature-dependent opening of tulip petals. Plant Cell Physiol 45:608–617

    PubMed  CAS  Google Scholar 

  • Barkla BJ, Vera-Estrella R, Kirch H-H, Pantoja O, Bohnert HJ (1999) Aquaporin localization – how valid are the TIP and PIP labels? Trends Plant Sci 4:86–88

    PubMed  Google Scholar 

  • Barrieu F, Chaumont F, Chrispeels MJ (1998) High expression of the tonoplast aquaporin ZmTIP1 in epidermal and conducting tissues of maize. Plant Physiol 117:1153–1163

    PubMed  CAS  Google Scholar 

  • Barrieu F, Marty-Mazars D, Thomas D, Chaumont F, Charbonnier M, Marty F (1999) Desiccation and osmotic stress increase the abundance of mRNA of the tonoplast aquaporin BobTIP26-1 in cauliflower cells. Planta 209:77–86

    PubMed  CAS  Google Scholar 

  • Bastias E, Fernández-García N, Carvajal M (2004) Aquaporin functionality in roots of Zea mays in relation to the interactive effects of boron and salinity. Plant Biol (Stuttg) 6:415–421

    CAS  Google Scholar 

  • Biela A, Grote K, Otto B, Hoth S, Hedrich R, Kaldenhoff R (1999) The Nicotiana tabacum plasma membrane aquaporin NtAQP1 is mercury-insensitive and permeable for glycerol. Plant J 18:565–570

    PubMed  CAS  Google Scholar 

  • Bienert GP, Schjoerring JK, Jahn TP (2006) Membrane transport of hydrogen peroxide. Biochim Biophys Acta 1758:994–1003

    PubMed  CAS  Google Scholar 

  • Bienert GP, Moller ALB, Kristiansen KA, Schulz A, Moller IM, Schjoerring JK, Jahn TP (2007) Specific aquaporins facilitate the diffusion of hydrogen peroxide across membranes. J Biol Chem 282:1183–1191

    PubMed  CAS  Google Scholar 

  • Bolan NS (1991) A critical review of the role of mycorrhizae fungi in the uptake of phosphorus by plants. Plant Soil 134:189–207

    CAS  Google Scholar 

  • Borgnia MJ, Agre P (2001) Reconstitution and functional comparison of purified GlpF and AqpZ, the glycerol and water channels from Escherichia coli. Proc Natl Acad Sci USA 98:2888–2893

    PubMed  CAS  Google Scholar 

  • Borgnia M, Nielsen S, Engel A, Agre P (1999) Cellular and molecular biology of the aquaporin water channels. Annu Rev Biochem 68:425–458

    PubMed  CAS  Google Scholar 

  • Bostock RM, Stermer BA (1989) Perspectives on wound-healing in resistance to pathogens. Annu Rev Phytopathol 27:343–371

    Google Scholar 

  • Bots M, Vergeldt F, Wolters-Arts M, Weterings K, van As H, Mariani C (2005a) Aquaporins of the PIP2 class are required for efficient anther dehiscence in tobacco. Plant Physiol 137:1049–1056

    PubMed  CAS  Google Scholar 

  • Bots M, Feron R, Uehlein N, Weterings K, Kaldenhoff R, Mariani T (2005b) PIP1 and PIP2 Aquaporins are differentially expressed during tobacco anther and stigma development. J Exp Bot 56:113–121

    PubMed  CAS  Google Scholar 

  • Boursiac Y, Chen S, Luu DT, Sorieul M, van den Dries N, Maurel C (2005) Early effects of salinity on water transport in Arabidopsis roots. Molecular and cellular features of aquaporin expression. Plant Physiol 139:790–805

    PubMed  CAS  Google Scholar 

  • Chaumont F, Barrieu F, Herman EM, Chrispeels MJ (1998) Characterization of a maize tonoplast aquaporin expressed in zones of cell division and elongation. Plant Physiol 117:1143–1152

    PubMed  CAS  Google Scholar 

  • Chaumont F, Barrieu F, Jung R, Chrispeels MJ (2000) Plasma membrane intrinsic proteins from maize cluster in two sequence subgroups with differential aquaporin activity. Plant Physiol 122:1025–1034

    PubMed  CAS  Google Scholar 

  • Chaumont F, Barrieu F, Wojcik E, Chrispeels MJ, Jung R (2001) Aquaporins constitute a large and highly divergent protein family in maize. Plant Physiol 125:1206–1215

    PubMed  CAS  Google Scholar 

  • Chaumont F, Moshelion M, Daniels MJ (2005) Regulation of plant aquaporin activity. Biol Cell 97:749–764

    PubMed  CAS  Google Scholar 

  • Ciavatta VT, Morillon R, Pullman GS, Chrispeels MJ, Cairney J (2001) An aquaglyceroporin is abundantly expressed early in the development of the suspensor and the embryo proper of loblolly pine. Plant Physiol 127:1556–1567

    PubMed  CAS  Google Scholar 

  • Cutler SR, Ehrhardt DW, Griffitts JS, Somerville CR (2000) Random GFP::cDNA fusions enable visualization of subcellular structures in cells of Arabidopsis at a high frequency. Proc Natl Acad Sci USA 97:3718–3723

    PubMed  CAS  Google Scholar 

  • Daniels MJ, Mirkov TE, Chrispeels MJ (1994) The plasma membrane of Arabidopsis thaliana contains a mercury-insensitive aquaporin that is a homolog of the tonoplast water channel protein TIP. Plant Physiol 106:1325–1333

    PubMed  CAS  Google Scholar 

  • Danielson JHA, Johanson U (2008) Unexpected complexity of the aquaporin gene family in the moss Phycomistrella patens. BMC Plant Biol 8:1–16

    Google Scholar 

  • Dean RM, Rivers RL, Zeidel ML, Roberts DM (1999) Purification and functional reconstitution of soybean nodulin 26. An aquaporin with water and glycerol transport properties. Biochemistry 38:347–353

    PubMed  CAS  Google Scholar 

  • Dordas C, Brown PH (2000) Permeability of boric acid across lipid bilayers and factors affecting it. J Membr Biol 175:95–105

    PubMed  CAS  Google Scholar 

  • Dordas C, Chrispeels MJ, Brown PH (2000) Permeability and channel-mediated transport of boric acid across membrane vesicles isolated from squash roots. Plant Physiol 124:1349–1362

    PubMed  CAS  Google Scholar 

  • Dowd C, Wilson IW, McFadden H (2004) Gene expression profile changes in cotton root and hypocotyls tissues in response to infection with Fusarium oxysporum F, sp, vasinfectum. Mol Plant microbe Interact 17:654–667

    PubMed  CAS  Google Scholar 

  • Eisenbarth DA, Weig AR (2005) Dynamics of aquaporins and water relations during hypocotyls elongation in Ricinus communis L. seedlings. J Exp Bot 56:1831–1842

    PubMed  CAS  Google Scholar 

  • Fetter K, Van Wilder V, Moshelion M, Chaumont F (2004) Interactions between plasma membrane aquaporins modulate their water channel activity. Plant Cell 16:215–228

    PubMed  CAS  Google Scholar 

  • Fleurat-Lessard P, Frangne N, Maeshima M, Ratajczak R, Bonnemain JL, Martinoia E (1997) Increased expression of vacuolar aquaporin and H + -ATPase related to motor cell function in Mimosa pudica L. Plant Physiol 114:827–834

    PubMed  CAS  Google Scholar 

  • Fleurat-Lessard P, Michonneau P, Maeshima M, Drevon JJ, Serraj R (2005) The distribution of aquaporin subtype (PIP1, PIP2 and gamma-TIP) is tissue dependent in soybean (Glycine max) root nodule. Ann Bot 96:457–460

    PubMed  CAS  Google Scholar 

  • Flexas J, Ribas-Carbó M, Hanson DT, Bota J, Otto B, Cifre J, McDowell N, Medrano H, Kaldenhoff R (2006) Tobacco aquaporin NtAQP1 is involved in mesophyll conductance to CO2 in vivo. Plant J 48:427–439

    PubMed  CAS  Google Scholar 

  • Fortin MG, Morrison NA, Verma DP (1987) Nodulin-26, a peribacteroid membrane nodulin is expressed independently of the development of the peribacteroid compartment. Nucleic Acids Res 15:813–824

    PubMed  CAS  Google Scholar 

  • Fray RG, Wallace A, Grierson D, Lycett GW (1994) Nucleotide sequence and expression of ripening and water stress-related cDNA from tomato with homology to the MIP class of membrane channel proteins. Plant Mol Biol 24:539–543

    PubMed  CAS  Google Scholar 

  • Fricke W, Akhiyarova G, Wei W, Alexandersson E, Miller A, Kjellbom PO, Richardson A, Wojciechowski T, Schreiber L, Veselov D, Kudoyarova G, Volkov V (2006) The short-term growth response to salt of the developing barley leaf. J Exp Bot 57:1079–1095

    PubMed  CAS  Google Scholar 

  • Fukuda H (2000) Programmed cell death of tracheary elements as a paradigm in plants. Plant Mol Biol 44:245–253

    PubMed  CAS  Google Scholar 

  • Fukuhara T, Kirch HH, Bohnert BJ (1999) Expression of Vp1 and water channel proteins during seed germination. Plant Cell Environ 22:417–424

    CAS  Google Scholar 

  • Gaspar M, Bousser A, Sissoeff I, Roche O, Hoarau J, Mahe A (2003) Cloning and characterization of ZmPIP1-5b, an aquaporin transporting water and urea. Plant Sci 165:21–31

    CAS  Google Scholar 

  • Gerbeau P, Guclu J, Ripoche P, Maurel C (1999) Aquaporin Nt-TIPa can account for the high permeability of tobacco cell vacuolar membrane to small neutral solutes. Plant J 18:577–587

    PubMed  CAS  Google Scholar 

  • Gerbeau P, Amodeo G, Henzler T, Santoni V, Ripoche P, Maurel C (2002) The water permeability of Arabidopsis plasma membrane is regulated by divalent cations and pH. Plant J 30:71–81

    PubMed  CAS  Google Scholar 

  • Greenberg JT (1997) Programmed cell death in plant–pathogen interactions. Annu Rev Plant Physiol Plant Mol Biol 48:525–545

    PubMed  CAS  Google Scholar 

  • Grote K, von Trzebiatovski P, Kaldenhoff R (1998) RNA levels of plasma membrane aquaporins in Arabidopsis thaliana. Protoplasma 204:139–144

    CAS  Google Scholar 

  • Guenther JF, Roberts DM (2000) Water-selective and multifunctional aquaporins from Lotus japonicus nodules. Planta 210:741–748

    PubMed  CAS  Google Scholar 

  • Guex N, Peitsch M (1997) Swiss-Model and Swiis-Pdb Viewer: an environment for comparative protein modeling. Electrophoresis 18:2714–2723

    PubMed  CAS  Google Scholar 

  • Guo L, Wang ZY, Lin H, Cui WE, Chen J, Liu M, Chen ZL, Qu LJ, Gu H (2006) Expression and functional analysis of the rice plasma-membrane intrinsic protein gene family. Cell Res 16:277–286

    PubMed  CAS  Google Scholar 

  • Hanba YT, Shibasaka M, Hayashi Y, Hayakawa T, Kasamo K, Terashima I, Katsuhara M (2004) Overexpression of the barley aquaporin HvPIP2;1 increases internal CO2 conductance and CO2 assimilation in the leaves of transgenic rice plants. Plant Cell Physiol 45:521–529

    PubMed  CAS  Google Scholar 

  • Harley JL, Smith SE (1983) Mycorrhizal symbiosis. Academic, London

    Google Scholar 

  • Hazama A, Kozono D, Guggino WB, Agre P, Yasui M (2002) Ion permeation of AQP6 water channel protein: single-channel recording after Hg activation. J Biol Chem 277:29224–29230

    PubMed  CAS  Google Scholar 

  • Heller KB, Lin EC, Wilson TH (1980) Substrate specificity and transport properties of the glycerol facilitator of Escherichia coli. J Bacteriol 144:274–278

    PubMed  CAS  Google Scholar 

  • Henzler T, Steudle E (2000) Transport and metabolic degradation of hydrogen peroxide in Chara corallina: model calculations and measurements with the pressure probe suggest transport of H2O2 across water channels. J Exp Bot 51:2053–2066

    PubMed  CAS  Google Scholar 

  • Hertel A, Steudle E (1997) The function of water channels in Chara internodes provides evidence for compositive membrane transport and for a slippage of small organic solutes across water channels. Planta 202:324–335

    CAS  Google Scholar 

  • Hill AE, Shachar-Hill B (2006) A new approach to epithelial isotonic fluid transport: an osmosensor feedback model. J Membr Biol 210:77–90

    PubMed  CAS  Google Scholar 

  • Holm LM, Jahn TP, Moller AL, Schjoerring JK, Ferri D, Klaerke DA, Zeuthen T (2005) NH3 and NH4+ permeability in aquaporin-expressing Xenopus oocytes. Pflügers Arch 450:415–438

    PubMed  CAS  Google Scholar 

  • Ikeda M, Beitz E, Kozono D, Guggino WB, Agre P, Yasui M (2002) Characterization of aquaporin-6 as a nitrate channel in mammalian cells. Requirement of pore-lining residue threonine 63. J Biol Chem 277:39873–39879

    PubMed  CAS  Google Scholar 

  • Ishikawa F, Suga S, Uemura T, Sato MH, Maeshima M (2005) Novel type aquaporin SIPs ate mainly located to the ER membrane and show cell-specific expression in Arabidopsis thaliana. FEBS Lett 579:5814–5820

    PubMed  CAS  Google Scholar 

  • Jahn GY, Ohillips TE, Rogers JC (1999) Tonoplast intrinsic protein isoforms as markers for vacuolar functions. Plant Cell 11:1867–1882

    Google Scholar 

  • Jahn TP, Moller AL, Zeuthen T, Holm LM, Klaerke DA, Mohsin B, Kuhlbrandt W, Schjoerring JK (2004) Aquaporin homologues in plants and mammals transport ammonia. FEBS Lett 574:31–36

    PubMed  CAS  Google Scholar 

  • Jang JV, Kim DG, Kim YO, Kang H (2004) An expression analysis of a gene family encoding plasma membrane aquaporins in response to abiotic stresses in Arabidopsis thaliana. Plant Mol Biol 54:713–725

    PubMed  CAS  Google Scholar 

  • Johanson U, Karlsson M, Johansson I, Gustavsson S, Sjovall S, Fraysse L, Weig AR, Kjellbom P (2001) The complete set of genes encoding major intrinsic proteins in Arabidopsis provides a framework for a new nomenclature for major intrinsic proteins in plants. Plant Physiol 126:1358–1369

    PubMed  CAS  Google Scholar 

  • Johansson I, Karlsson M, Shukla VK, Chrispeels MJ, Larsson C, Kjellbom P (1998) Water transport activity of the plasma membrane aquaporin PM28A is regulated by phosphorylation. Plant Cell 10:451–459

    PubMed  CAS  Google Scholar 

  • Johansson I, Karlsson M, Johanson U, Larsson C, Kjellbom P (2000) The role of aquaporins in cellular and whole plant water balance. Biochim Biophys Acta 1465:324–342

    PubMed  CAS  Google Scholar 

  • Johnson KD, Chrispeels MJ (1992) Tonoplast-bound protein-kinase phosphorylates tonoplast intrinsic protein. Plant Physiol 100:1787–1795

    PubMed  CAS  Google Scholar 

  • Kaldenhoff R, Fischer M (2006) Functional aquaporin diversity in plants. Biochim Biophys Acta 1758:1134–1141

    PubMed  CAS  Google Scholar 

  • Kaldenhoff R, Kölling A, Meyers J, Karmann U, Ruppel G, Richter G (1995) The blue light-responsive AtH2 gene of Arabidopsis thaliana is primarily expressed in expanding as well as in differentiating cells and encodes a putative channel protein of the plasma membrane. Plant J 7:87–95

    PubMed  CAS  Google Scholar 

  • Kaldenhoff R, Grote K, Zhu J-J, Zimmermann U (1998) Significance of plasmalemma aquaporins for water-transport in Arabidopsis thaliana. Plant J 14:121–128

    PubMed  CAS  Google Scholar 

  • Kaldenhoff R, Ribas-Carbo M, Sans JF, Lovisolo C, Heckwolf M, Uehlein N (2008) Aquaporins and plant water balance. Plant Cell Environ 31:658–666

    PubMed  CAS  Google Scholar 

  • Kammerloher W, Fisher U, Piechottka GP, Schaffner AR (1994) Water channels in the plant plasma membrane cloned by immunoselection from a mammalian expression system. Plant J 6:187–199

    PubMed  CAS  Google Scholar 

  • Katsuhara M, Hanba YT (2008) Barley plasma membrane intrinsic proteins (PIP Aquaporins) as water and CO2 transporters. Pflügers Arch 456:687–691

    PubMed  CAS  Google Scholar 

  • Katsuhara M, Akiyama Y, Koshio K, Shibasaka M, Kasamo K (2002) Functional analysis of water channels in barley roots. Plant Cell Physiol 43:885–893

    PubMed  CAS  Google Scholar 

  • Katsuhara M, Hanba YT, Shiratake K, Maeshima M (2008) Expanding roles of plant aquaporins in plasma membrane and organelles. Funct Plant Biol 35:1–14

    CAS  Google Scholar 

  • Kawasaki S, Borchert C, Deyholos M, Wang H, Brazille S, Kawai K, Galbraith D, Bohnert HJ (2001) Gene expression profiles during the initial phase of salt stress in rice. Plant Cell 13:889–905

    PubMed  CAS  Google Scholar 

  • Khalvati MA, Hu Y, Mozafar A, Schmidhalter U (2005) Quantification of water uptake by arbuscular mycorrhizal hyphae and its significance for leaf growth, water relations, and gas exchange of barley subjected to drought stress. Plant Biol 7:706–712

    PubMed  CAS  Google Scholar 

  • Kirch HH, Vera-Estrella R, Golldack D, Quigley F, Michalowski CB, Barkla BJ, Bohnert HJ (2000) Expression of water channel proteins in Mesembryanthemum crystallinum. Plant Physiol 123:111–124

    PubMed  CAS  Google Scholar 

  • Kjellbom P, Larsson C, Johansson II, Karlsson M, Johanson U (1999) Aquaporins and water homeostasis in plants. Trends Plant Sci 4:308–314

    PubMed  Google Scholar 

  • Klebl F, Wolf M, Sauer N (2003) A defect in the yeast plasma membrane urea transporter Dur3p is complemented by CpNIP1, a Nod26-like protein from zucchini (Curcubita pepo L.) and by Arabidpsis thaliana delta-TIP or gamma-TIP. FEBS Lett 547:69–74

    PubMed  CAS  Google Scholar 

  • Kobae Y, Mizutani M, Segami S, Maeshima M (2006) Immunochemical analysis of aquaporin isoforms in Arabidopsis suspension-cultured cells. Biosci Biotechnol Biochem 70:980–987

    PubMed  CAS  Google Scholar 

  • Kruse E, Uehlein N, Kaldenhoff R (2006) The aquaporins. Genome Biol 7:206.1–206.6

    Google Scholar 

  • Lamb C, Dixon RA (1997) The oxidative burst in plant disease resistance. Annu Rev Plant Physiol Plant Mol Biol 48:251–275

    PubMed  CAS  Google Scholar 

  • Li GW, Peng YH, Yu X, Zhang MH, Cai W-M, Sun WN, Su WA (2008) Transport functions and expression analysis of vacuolar membrane aquaporins in response to various stresses in rice. J Plant Physiol 165:1879–1888

    PubMed  CAS  Google Scholar 

  • Lian HL, Yu X, Ye Q, Ding X, Kitagawa Y, Kwak SS, Su WA, Tang ZC (2004) The role of aquaporin RWC3 in drought avoidance in rice. Plant Cell Physiol 45:481–489

    PubMed  CAS  Google Scholar 

  • Liu Z, Shen J, Carbrey JM, Mukhopadhyay R, Agre P, Rosen BP (2002) Arsenite transport by mammalian aquaglyceroporins AQP7 and AQP9. Proc Natl Acad Sci USA 99:6053–6058

    PubMed  CAS  Google Scholar 

  • Liu LH, Ludewig U, Gassert B, Frommer WB, von Wiren N (2003) Urea transport by nitrogen-regulated tonoplast intrinsic proteins in Arabidopsis. Plant Physiol 133:1220–1228

    PubMed  CAS  Google Scholar 

  • Loque D, Ludewig U, Yuan L, von Wiren N (2005) Tonoplast intrinsic proteins AtTIP2;1 and AtTIP2;3 facilitate NH3 transport into the vacuole. Plant Physiol 137:671–680

    PubMed  CAS  Google Scholar 

  • Ludevid D, Höfte H, Himelblau E, Chrispeels MJ (1992) The expression pattern of the tonoplast intrinsic protein γ-TIP in Arabidopsis thaliana is correlated with cell enlargement. Plant Physiol 100:1633–1639

    PubMed  CAS  Google Scholar 

  • Luu DT, Maurel C (2005) Aquaporins in a challenging environment: molecular gears for adjusting plant water status. Plant Cell Environ 28:85–96

    CAS  Google Scholar 

  • Ma S (2006) An analysis of the Arabidopsis Aquaporin TIP1;1 and analysis of stress response signaling in Arabidopsis. Ph.D Thesis, University of Illinois, 158 p

    Google Scholar 

  • Ma S, Quist TM, Ulanov A, Joly R, Bohnert HJ (2004) Loss of TIP1;1 aquaporin in Arabidopsis leads to cell and plant death. Plant J 40:845–859

    PubMed  CAS  Google Scholar 

  • Ma JF, Tamai K, Yamaji N, Mitani N, Kinishi S, Katsuhara M, Ishiguro M, Murata Y, Yano M (2006) A silicon transporter in rice. Nature 440:688–691

    PubMed  CAS  Google Scholar 

  • Ma N, Xue J, Li Y, Liu X, Dai F, Jia W, Luo Y, Gao J (2008) Rh-PIP2;1, a rose aquaporin, is involved in ethylene-regulated petal expansion. Plant Physiol 148:894–907

    PubMed  CAS  Google Scholar 

  • Maeshina M, Ishikawa F (2008) ER membrane aquaporins in plants. Pflügers Arch 456:709–716

    Google Scholar 

  • Mariaux JB, Bockel C, Salamini F, Bartels D (1998) Desiccation-and abscisic acid- responsive genes encoding major intrinisc proteins (MIPs) from the resurrection plant Crasterostigma plantagineum. Plant Mol Biol 38:1089–1099

    PubMed  CAS  Google Scholar 

  • Marjanovic Z, Uwe N, Hampp R (2005a) Mycorrhiza formation enhances adaptive response of hybrid poplar to drought. Ann NY Acad Sci 1048:496–499

    PubMed  CAS  Google Scholar 

  • Marjanovic Z, Uehlein N, Kaldenhoff R, Zwiazek JJ, Weiss M, Hampp R, Nehls U (2005b) Aquaporins in poplar: what a difference a symbiont makes! Planta 222:258–268

    PubMed  CAS  Google Scholar 

  • Martinez-Ballesta MC, Aparicio F, Pallas V, Martinez V, Carvajal M (2003) Influence of saline stress on root hydraulic conductance and PIP expression in Arabidopsis. J Plant Physiol 160:689–697

    PubMed  CAS  Google Scholar 

  • Marulanda A, Azcón R, Ruiz-Lozano JM (2003) Contribution of six arbuscular mycorrhizal fungal isolates to water uptake by Lactuca sativa plants under drought stress. Physiol Plant 119:526–533

    CAS  Google Scholar 

  • Maurel C (2007) Plant Aquaporins: novel functions and regulation properties. FEBS Lett 581:2227–2236

    PubMed  CAS  Google Scholar 

  • Maurel C, Reizer J, Schoeder JI, Chrispeels MJ (1993) The vacuolar membrane protein γ-TIP creates water specific channels in Xenopus oocytes. EMBO J 12:2241–2247

    PubMed  CAS  Google Scholar 

  • Maurel C, Kado RT, Guern J, Chrispeels MJ (1995) Phosphorylation regulates the water channel activity of the seed-specific aquaporin α-TIP. EMBO J 14:3028–3035

    PubMed  CAS  Google Scholar 

  • Maurel C, Javot H, Lauvergeat V, Gerbeau P, Taournaire C, Santoni V, Heyes J (2002) Molecular physiology of aquaporins in plants. Int Rev Cytol 215:105–148

    PubMed  CAS  Google Scholar 

  • Maurel C, Verdoucq L, Luu DT, Santoni V (2008) Plant aquaporins: membrane channels with multiple integrated functions. Annu Rev Plant Biol 59:595–624

    PubMed  CAS  Google Scholar 

  • Melkonian J, Yu LX, Setter TL (2004) Chilling response of maize (Zea mays L.) seedlings: root hydrolic conductance, abscisic acid, and stomatal conductance. J Exp Bot 55:1751–1760

    PubMed  CAS  Google Scholar 

  • Miao GH, Hong Z, Setter TL (1992) Topology and phosphorylation of soybean nodulin-26, an intrinsic protein of the peribacteroid membrane. J Cell Biol 118:481–490

    PubMed  CAS  Google Scholar 

  • Morrison NA, Bisseling T, Verma DP (1988) Development and differentiation of the root nodule. Involvement of plant and bacterial genes. Dev Biol 5:405–425

    CAS  Google Scholar 

  • Moshelion M, Becker D, Czempinski K, Mueller-Roeber AB, Hedrich R, Moran N (2002) Plasma membrane aquaporins in the motor of Samanea saman: diurnal and circadian regulation. Plant Cell 14:727–739

    PubMed  CAS  Google Scholar 

  • Murata K, Mitsuoka K, Hirai T, Walz T, Agre P, Heymann JB, Engel A, Fujiyoshi Y (2000) Structural determinants of water permeation through aquaporin-1. Nature 407:599–605

    PubMed  CAS  Google Scholar 

  • Nemeth-Cahalan KL, Hall JE (2000) pH and calcium regulate the water permeability of aquaporin 0. J Biol Chem 275:6777–8782

    PubMed  CAS  Google Scholar 

  • Nemeth-Cahalan KL, Kalman K, Hall JE (2004) Molecular basis of pH and Ca2+ regulation of aquaporin water permeability. J Gen Physiol 123:573–580

    PubMed  CAS  Google Scholar 

  • Neumann PM (2008) Coping mechanisms for crop plants in drought-prone environments. Ann Bot 101:901–907

    PubMed  CAS  Google Scholar 

  • Niemietz CM, Tyerman SD (2000) Channel-mediated permeation of ammonia gas through the peribacteroid membrane of soybean nodules. FEBS Lett 465:110–114

    PubMed  CAS  Google Scholar 

  • O’Brien M, Bertrand C, Matton DP (2002) Characterization of a fertilization-induced and developmentally regulated plasma-membrane aquaporin expressed in reproductive tissues, in the wild potato Solanum chacoense Bitt. Planta 215:485–493

    PubMed  Google Scholar 

  • Ouziad F, Hildebrandt U, Schmelzer E, Bothe H (2005) Differential gene expressions in arbuscular mycorrhizal-colonized tomato grown under heavy metal stress. J Plant Physiol 162:634–649

    PubMed  CAS  Google Scholar 

  • Paris N, Stanley CM, Jones RL, Rogers JC (1996) Plant cells contain two functionally distinct vacuolar compartments. Cell 85:563–572

    PubMed  CAS  Google Scholar 

  • Pih KT, Kabilan V, Lim JH, Kang SG, Piao HL, Jin JB, Hwang I (1999) Characterization of two new channel protein genes in Arabidopsis. Mol Cells 28:84–90

    Google Scholar 

  • Porcel R, Aroca R, Azcon R, Ruiz-Lozano JM (2005) PIP aquaporin gene expression in arbuscular mycorrhizal Glycine max and Lactuca sativa plants in relation to drought stress tolerance. Plant Mol Biol 60:389–404

    Google Scholar 

  • Prak S, Hem S, Boudet J, Viennois G, Sommerer N, Rossignol M, Maurel C, Santoni V (2008) Multiple phosphorylation in the C-terminal tail of plant plasma membrane aquaporins: role in subcellular trafficking of PIP2;1 in response to salt stress. Mol Cell Proteomics 7:1019–1030

    PubMed  CAS  Google Scholar 

  • Quigley F, Rosenberg JM, Shachar-Hill Y, Bohnert HJ (2002) From genome to function: the Arabidopsis aquaporins. Genome Biol 3:1–17

    Google Scholar 

  • Reisen D, Leborgne-Castel N, Ozalp C, Chaumont F, Marty F (2003) Expression of cauliflower tonoplast aquaporin tagged with GFP in tobacco suspension cells correlates with an increase in cell size. Plant Mol Biol 52:387–400

    PubMed  CAS  Google Scholar 

  • Rivers RL, Dean RM, Chandy G, Hall JE, Roberts DM, Zeidel ML (1997) Functional analysis of nodulin 26, an aquaporin in soybean root nodule symbiosomes. J Biol Chem 272:16256–16261

    PubMed  CAS  Google Scholar 

  • Robinson DG, Sieber H, Kammerloher W, Schäffner AR (1996) PIP1 aquaporins are concentrated in plasmalemmasomes of Arabidopsis mesophyll. Plant Physiol 111:645–649

    PubMed  CAS  Google Scholar 

  • Sakurai J, Ishikawa F, Yamaguchi T, Uemura M, Maeshima M (2005) Identification of 33 rice aquaporin genes and analysis of their expression and function. Plant Cell Physiol 46:1568–1577

    PubMed  CAS  Google Scholar 

  • Sarda X, Tousch D, Ferrare K, Legrand E, Dupuis JM, Casse-Delbart F, Lamaze T (1997) Two TIP-like encoding aquaporins are expressed in sunflower guard cells. Plant J 12:1103–1111

    PubMed  CAS  Google Scholar 

  • Schmid M, Davison TS, Henz SR, Pape UJ, Demar M, Vingron M, Schöjkopf B, Weigel D, Lohmann JU (2005) A gene expression map of Arabidopsis thaliana development. Nat Genet 37:501–506

    PubMed  CAS  Google Scholar 

  • Schutz K, Tyerman SD (1997) Water channels in Chara coralina. J Exp Bot 48:1511–1518

    CAS  Google Scholar 

  • Schuurmans JA, van Dongen JT, Rutjens BP, Boonman A, Pierterse CM, Borstlap AC (2003) Members of the aquaporin family in the developing pea seed coat include representatives of the PIP, TIP and NIP subfamilies. Plant Mol Biol 53:633–645

    PubMed  CAS  Google Scholar 

  • Shao HB, Chu LY, Shao MA, Zhao CX (2008) Advances in functional regulation mechanisms of plant aquaporins: their diversity, gene expression, localization, structure and roles in plant soil–water relations. Mol Membr Biol 25:179–191

    PubMed  CAS  Google Scholar 

  • Siefritz F, Otto B, Bienert GP, van der Krol A, Kaldenhoff R (2004) The plasma membrane aquaporin NtAQP1 is a key component of the leaf unfolding mechanism in tobacco. Plant J 37:147–155

    PubMed  CAS  Google Scholar 

  • Sjovall-Larsen S, Alexandersson E, Johansson I, Karlsson M, Hohanson U, Kjellbom P (2006) Purification and characterization of two protein kinases acting on the aquaporin SoPIP2;1. Biochim Biophys Acta 1758:1157–1164

    PubMed  Google Scholar 

  • Sommer A, Geist B, Da Ines O, Gebwolf R, Schäffner AR, Obermeyer G (2008) Ectopic expression of Arabidopsis thaliana plasma membrane intrinsic protein 2 aquaporins in lily pollen increases the plasma membrane water permeability of grain but not tube protoplasts. New Phytol 180:787–797

    PubMed  CAS  Google Scholar 

  • Suga S, Maeshima M (2004) Water channel activity of radish plasma membrane aquaporins heterologously expressed in yeast and their modification by site-directed mutagenesis. Plant Cell Physiol 45:823–830

    PubMed  CAS  Google Scholar 

  • Takano J, Wada M, Ludewig U, Schaaf G, von Wiren N, Fujiwara T (2006) The Arabidopsis major intrinsic protein NIP5;1 is essential for efficient boron uptake and plant development under boron limitation. Plant Cell 18:1498–1509

    PubMed  Google Scholar 

  • Temmei Y, Uchida S, Hoshino D, Kanzawa N, Kuwahara M, Sasaki S, Tsuchiya T (2005) Water channel activities of Mimosa pudica plasma membrane intrinsic proteins are regulated by direct interaction and phosphorylation. FEBS Lett 579:4417–4422

    PubMed  CAS  Google Scholar 

  • Terashima I, Ono K (2002) Effects of HgCl2 on CO2 dependence of leaf photosynthesis: evidence indicating involvement of aquaporins in CO2 diffusion across the plasma membrane. Plant Cell Physiol 43:70–78

    PubMed  CAS  Google Scholar 

  • Toole EH, Hendricks SB, Borthwick HA, Toole VK (1956) Physiology of seed germination. Annu Rev Plant Physiol 7:299–324

    CAS  Google Scholar 

  • Törnroth-Horsefield S, Wang Y, Hedfalk K, Johanson U, Karlsson M, Tajkhorshid E, Neutze R, Kjellbom P (2006) Structural mechanism of plant aquaporin gating. Nature 439:688–694

    PubMed  Google Scholar 

  • Tournaire-Roux C, Sutka M, Javot H, Gout E, Gerbeau P, Luu DT, Bligny R, Maurel C (2003) Cytosolic pH regulates root water transport during anoxia stress through gating of aquaporins. Nature 425:393–397

    PubMed  CAS  Google Scholar 

  • Tyerman SD, Niemietz CM, Bramley H (2002) Plant aquaporins: multifunctional water and solute channels with expanding roles. Plant Cell Environ 25:173–194

    PubMed  CAS  Google Scholar 

  • Uehlein N, Lovisolo C, Siefritz F, Kaldenhoff R (2003) The tobacco aquaporin NtAQP1 is a membrane CO2 pore with physiological functions. Nature 16:734–738

    Google Scholar 

  • Uehlein N, Otto B, Hanson DT, Fisher M, McDowell N, Kaldenhoff R (2008) Function of Nicotiana tabacum aquaporins as chloroplast gas pores challenges the concept of membrane CO2 permeability. Plant Cell 20:648–657

    PubMed  CAS  Google Scholar 

  • Valot B, Dieu M, Recorbet G, Raes M, Gianinazzi S, Dumas-Gaudot E (2005) Identification of membrane-associated proteins regulated by the arbuscular mycorrhizal symbiosis. Plant Mol Biol 59:565–580

    PubMed  CAS  Google Scholar 

  • Van Wilder V, Miecielica U, Degand H, Derua R, Waelkens E, Chaumont F (2008) Maize plasma membrane aquaporins belonging to the PIP1 and PIP2 subgroups are in vivo phosphorylated. Plant Cell Physiol 49:1364–1377

    PubMed  Google Scholar 

  • Vander Willigen C, Pammernter NW, Mundree SG, Farrant JM (2004) Mechanical stabilization of desiccated vegetative tissues of the resurrection grass Eragrostis nindensis: does a TIP 3;1 and compartmentalization of subcellular components and metabolites play a role? J Exp Bot 55:651–661

    PubMed  CAS  Google Scholar 

  • Vander Willigen C, Postaire O, Tournaire-Roux C, Boursiac Y, Maurel C (2006) Expression and inhibition of aquaporins in germinating Arabidopsis seeds. Plant Cell Physiol 47:1241–1250

    PubMed  CAS  Google Scholar 

  • Vanderleur R, Niemietz C, Tilbrook J, Tyerman SD (2005) Roles of aquaporins in root response to irrigation. Plant Soil 274:141–161

    Google Scholar 

  • Vera-Estrella R, Barkla BJ, Higgins VJ, Blumwald E (1994) Plant defense response to fungal pathogens: activation of host-plasma membrane H+-ATPase by elicitor induced enzyme phosphorylation. Plant Physiol 104:209–215

    PubMed  CAS  Google Scholar 

  • Vera-Estrella R, Barkla BJ, Gallardo-Amarillas C, Bohnert HJ, Pantoja O (2000) Aquaporin regulation under salt and osmotic stress in the halophyte Mesembryanthemum crystallinum L. In: Hohmann S, Nielsen S (eds) Molecular biology and physiology of water and solute transport. Kluwer/Plenum, New York, pp 339–346

    Google Scholar 

  • Vera-Estrella R, Barkla BJ, Bohnert HJ, Pantoja O (2004) Novel regulation of aquaporins during osmotic stress. Plant Physiol 135:2318–2329

    PubMed  CAS  Google Scholar 

  • Verkman AS, Mitra AK (2000) Structure and function of aquaporin water channels. Am J Physiol Renal Physiol 278:F13–F28

    PubMed  CAS  Google Scholar 

  • Wallace IS, Roberts DM (2004) Homology modeling of representative subfamilies of Arabidopsis major intrinsic proteins. Classification based on the aromatic/arginine selectivity filter. Plant Physiol 135:1059–1068

    PubMed  CAS  Google Scholar 

  • Wallace IS, Roberts DM (2005) Distinct transport selectivity of two structural sub-classes of the nodulin-like intrinsic protein family of plant aquaglyceroporin channels. Biochemistry 44:16826–16834

    PubMed  CAS  Google Scholar 

  • Wallace IS, Roberts DM (2006) The structure, function and regulation of the nodulin 26-like intrinsic protein family of plant aquaglyceroporins. Biochim Biophys Acta 1758:1165–1175

    PubMed  CAS  Google Scholar 

  • Weaver CD, Roberts DM (1991) Phosphorylation of nodulin-26 by a calcium-dependent protein-kinase. FASEB J 5:A426

    Google Scholar 

  • Weaver CD, Roberts DM (1992) Determination of the site of phosphorylation of nodulin-26 by the calcium-dependent protein kinase from soybean nodules. Biochemistry 31:8954–8959

    PubMed  CAS  Google Scholar 

  • Weig AR, Jakob C (2000) Functional identification of the glycerol permease activity of Arabidopsis thaliana NLM1 and NLM2 proteins by heterologous expression in Saccharomyces cerevisiae. FEBS Lett 481:293–298

    PubMed  CAS  Google Scholar 

  • Yamada S, Katsuhara M, Kelly WB, Michalowski CB, Bohnert HJ (1995) A family of transcripts encoding water channel proteins: tissue-specific expression in the common ice plant. Plant Cell 7:1129–1142

    PubMed  CAS  Google Scholar 

  • Yamada S, Nelson DE, Ley E, Marquez S, Bohnert HJ (1997) The expression of an aquaporin promoter from Mesembryanthemum crystallinum in tobacco. Plant Cell Physiol 38:1326–1332

    PubMed  CAS  Google Scholar 

  • Yamaji N, Mitatni N, Ma JF (2008) A transporter regulating silicon distribution in rice shoots. Plant Cell 20:1381–1389

    PubMed  CAS  Google Scholar 

  • Yasui M, Hazama A, Kwon TH, Nielsen S, Guggino WB, Agre P (1999) Rapid gating and anion permeability of an intracellular aquaporin. Nature 402:184–187

    PubMed  CAS  Google Scholar 

  • Yool AJ, Weinstein AM (2002) New roles for old holes: ion channel function in aquaporin-1. News Physiol Sci 17:68–72

    PubMed  CAS  Google Scholar 

  • Yool A, Stamer W, Regan J (1996) Forskolin simulation of water and cation permeability in aquaporin 1 water channels. Science 273:1216–1218

    PubMed  CAS  Google Scholar 

  • Yu XS, Yin X, Lafer EM, Jiang JX (2005) Developmental regulation of the direct interaction between the intracellular loop of connexin 45.6 and the C-terminus of major intrinsic (aquaporin-0). J Biol Chem 280:22081–22090

    PubMed  CAS  Google Scholar 

  • Yu J, Yool AJ, Schulten K, Tajkhorshid E (2006) Mechanism of gating and ion conductivity of a possible tetrameric pore in Aquaporin-1. Structure 14:1411–1423

    PubMed  CAS  Google Scholar 

  • Zardona R (2005) Phylogeny and evolution of the major intrinsic protein family. Biol Cell 97:397–414

    Google Scholar 

  • Zelazny E, Borst JW, Muylaert M, Batoko H, Hemminga MA, Chamont F (2007) FRET imaging in living maize cells reveals that plasma membrane aquaporins interact to regulate their subcellular localization. Proc Natl Acad Sci USA 104:12359–12364

    PubMed  CAS  Google Scholar 

  • Zeuthen T, Klaerke DA (1999) Transport of water and glycerol in aquaporin 3 is gated by H+. J Biol Chem 274:21631–21636

    PubMed  CAS  Google Scholar 

  • Zhu C, Schraut D, Hartung W, Schaffner AR (2005) Differential responses of maize MIP genes to salt stress and ABA. J Exp Bot 421:2971–2981

    Google Scholar 

Download references

Acknowledgments

We thank Dr. Shisong Ma (Yale University) and Julio Amezcua (IBT/UNAM, México) for help with the figures. Our work has been supported by the National Science Foundation of the United States of America, UIUC institutional grants, and by grants from “Consejo Nacional de Ciencia y Tecnología” (CONACyT 57685) and Dirección general de apoyo al personal académico (DGAPA IN221308, Mexico).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosario Vera-Estrella .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Vera-Estrella, R., Bohnert, H.J. (2011). Physiological Roles for the PIP Family of Plant Aquaporins. In: Murphy, A., Schulz, B., Peer, W. (eds) The Plant Plasma Membrane. Plant Cell Monographs, vol 19. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13431-9_8

Download citation

Publish with us

Policies and ethics