Skip to main content

Plasma Membrane ATPases

  • Chapter
  • First Online:
The Plant Plasma Membrane

Part of the book series: Plant Cell Monographs ((CELLMONO,volume 19))

Abstract

The plasma membrane separates the cellular contents from the surrounding environment. Nutrients must enter through the plasma membrane in order to reach the cell interior, and toxic metabolites and several ions leave the cell by traveling across the same barrier. Biological pumps in the plasma membrane include ABC transporters, vacuolar (V-type) H+ pumps, and P-type pumps. These pumps all utilize ATP as a fuel for energizing pumping. This review focuses on the physiological roles of plasma membrane P-type pumps, as they represent the major ATP hydrolytic activity in this membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alves G, Ameglio T, Guilliot A, Fleurat-Lessard P, Lacointe A, Sakr S, Petel G, Julien JL (2004) Winter variation in xylem sap pH of walnut trees: involvement of plasma membrane H+-ATPase of vessel associated cells. Tree Physiol 24:99–105

    Article  PubMed  CAS  Google Scholar 

  • Arango M, Gevaudant F, Oufattole M, Boutry M (2003) The plasma membrane proton pump ATPase: the significance of gene subfamilies. Planta 216:355–365

    PubMed  CAS  Google Scholar 

  • Arguello JM, Eren E, Gonzalez-Guerrero M (2007) The structure and function of heavy metal transport P1B-ATPases. Biometals 20:233–248

    Article  PubMed  Google Scholar 

  • Axelsen KB, Palmgren MG (1998) Evolution of substrate specificities in the P-type ATPase superfamily. J Mol Evol 46:84–101

    Article  PubMed  CAS  Google Scholar 

  • Axelsen KB, Palmgren MG (2001) Inventory of the superfamily of P-type ion pumps in Arabidopsis. Plant Physiol 126:696–706

    Article  PubMed  CAS  Google Scholar 

  • Axelsen KB, Venema K, Jahn T, Baunsgaard L, Palmgren MG (1999) Molecular dissection of the C-terminal regulatory domain of the plant plasma membrane H+-ATPase AHA2: mapping of residues that when altered give rise to an activated enzyme. Biochemistry 38:7227–7234

    Article  PubMed  CAS  Google Scholar 

  • Baekgaard L, Fuglsang AT, Palmgren MG (2005) Regulation of plant plasma membrane H +- and Ca 2 +-ATPases by terminal domains. J Bioenerg Biomembr 37:369–374

    Article  PubMed  CAS  Google Scholar 

  • Baekgaard L, Luoni L, De Michelis MI, Palmgren MG (2006) The plant plasma membrane Ca2 + pump ACA8 contains overlapping as well as physically separated autoinhibitory and calmodulin-binding domains. J Biol Chem 281:1058–1065

    Article  PubMed  CAS  Google Scholar 

  • Baunsgaard L, Venema K, Axelsen KB, Villalba JM, Welling A, Wollenweber B, Palmgren MG (1996) Modified plant plasma membrane H+-ATPase with improved transport coupling efficiency identified by mutant selection in yeast. Plant J 10:451–458

    Article  PubMed  CAS  Google Scholar 

  • Baxter IR, Young JC, Armstrong G, Foster N, Bogenschutz N, Cordova T, Peer WA, Hazen SP, Murphy AS, Harper JF (2005) A plasma membrane H+-ATPase is required for the formation of proanthocyanidins in the seed coat endothelium of Arabidopsis thaliana. Proc Natl Acad Sci USA 102:2649–2654

    Article  PubMed  CAS  Google Scholar 

  • Bonza MC, Morandini P, Luoni L, Geisler M, Palmgren MG, De Michelis MI (2000) At-ACA8 encodes a plasma membrane-localized calcium-ATPase of Arabidopsis with a calmodulin-binding domain at the N terminus. Plant Physiol 123:1495–1506

    Article  PubMed  CAS  Google Scholar 

  • Bonza MC, Luoni L, De Michelis MI (2001) Stimulation of plant plasma membrane Ca2 +-ATPase activity by acidic phospholipids. Physiol Plant 112:315–320

    Article  PubMed  CAS  Google Scholar 

  • Boursiac Y, Harper JF (2007) The origin and function of calmodulin regulated Ca2+ pumps in plants. J Bioenerg Biomembr 39:409–414

    Article  PubMed  CAS  Google Scholar 

  • Boutry M, Michelet B, Goffeau A (1989) Molecular cloning of a family of plant genes encoding a protein homologous to plasma membrane H+-translocating ATPases. Biochem Biophys Res Commun 162:567–574

    Article  PubMed  CAS  Google Scholar 

  • Buch-Pedersen MJ, Pedersen BP, Veierskov B, Nissen P, Palmgren MG (2009) Protons and how they are transported by proton pumps. Pflügers Arch 457:573–579

    Article  PubMed  CAS  Google Scholar 

  • Camoni L, Iori V, Marra M, Aducci P (2000) Phosphorylation-dependent interaction between plant plasma membrane H+-ATPase and 14-3-3 proteins. J Biol Chem 275:9919–9923

    Article  PubMed  CAS  Google Scholar 

  • Carafoli E, Brini M (2000) Calcium pumps: structural basis for and mechanism of calcium transmembrane transport. Curr Opin Chem Biol 4:152–161

    Article  PubMed  CAS  Google Scholar 

  • Certal AC, Almeida RB, Carvalho LM, Wong E, Moreno N, Michard E, Carneiro J, Rodriguez-Leon J, Wu H-M, Cheung AY, Feijo JA (2008) Exclusion of a proton ATPase from the apical membrane is associated with cell polarity and tip growth in Nicotiana tabacum pollen tubes. Plant Cell 20:614–634

    Article  PubMed  CAS  Google Scholar 

  • Crivici A, Ikura M (1995) Molecular and structural basis of target recognition by calmodulin. Annu Rev Biophys Biomol Struct 24:85–116

    Article  PubMed  CAS  Google Scholar 

  • Duby G, Boutry M (2008) The plant plasma membrane proton pump ATPase: a highly regulated P-type ATPase with multiple physiological roles. Pflügers Arch 457:645–655

    Article  PubMed  Google Scholar 

  • Duby G, Poreba W, Piotrowiak D, Bobik K, Derua R, Waelkens E, Boutry M (2009) Activation of plant pasma membrane H+-ATPase by 14-3-3 proteins is negatively controlled by two phosphorylation sites within the H+-ATPase C-terminal region. J Biol Chem 284:4213–4221

    Article  PubMed  CAS  Google Scholar 

  • Eren E, Arguello JM (2004) Arabidopsis HMA2, a divalent heavy metal-transporting PIB-type ATPase, is involved in cytoplasmic Zn 2 + homeostasis. Plant Physiol 136:3712–3723

    Article  PubMed  CAS  Google Scholar 

  • Eren E, Kennedy DC, Maroney MJ, Arguello JM (2006) A novel regulatory metal binding domain is present in the C-terminus of Arabidopsis Zn2+-ATPase HMA2. J Biol Chem 281:33881–33891

    Article  PubMed  CAS  Google Scholar 

  • Eren E, Gonzalez-Guerrero M, Kaufman BM, Arguello JM (2007) Novel Zn2 + coordination by the regulatory N-terminus metal binding domain of Arabidopsis thaliana Zn2 +-ATPase HMA2. Biochemistry 46:7754–7764

    Article  PubMed  CAS  Google Scholar 

  • Frick UB, Schaller A (2002) cDNA microarray analysis of fusicoccin-induced changes in gene expression in tomato plants. Planta 216:83–94

    Article  PubMed  CAS  Google Scholar 

  • Fuglsang AT, Visconti S, Drumm K, Jahn T, Stensballe A, Mattei B, Jensen ON, Aducci P, Palmgren MG (1999) Binding of 14-3-3 protein to the plasma membrane H+-ATPase AHA2 involves the three C-terminal residues Tyr946-Thr-Val and requires phosphorylation of Thr947. J Biol Chem 274:36774–36780

    Article  PubMed  CAS  Google Scholar 

  • Fuglsang AT, Borch J, Bych K, Jahn TP, Roepstorff P, Palmgren MG (2003) The binding site for regulatory 14-3-3 protein in plant plasma membrane H+-ATPase: Involvement of a region promoting phosphorylation-independent interaction in addition to the phosphorylation-dependent C-terminal end. J Biol Chem 278:42266–42272

    Article  PubMed  CAS  Google Scholar 

  • Fuglsang AT, Tulinius G, Cui N, Palmgren MG (2006) Protein phosphatase 2A scaffolding subunit A interacts with plasma membrane H+-ATPase C-terminus in the same regions as 14-3-3 protein. Physiol Plant 128:334–340

    Article  CAS  Google Scholar 

  • Fuglsang AT, Guo Y, Cuin TA, Qiu Q, Song C, Kristiansen KA, Bych K, Schulz A, Shabala S, Schumaker KS, Palmgren MG, Zhu JK (2007) Arabidopsis protein kinase PKS5 inhibits the plasma membrane H+-ATPase by preventing interaction with 14-3-3 Protein. Plant Cell 19:1617–1634

    Article  PubMed  CAS  Google Scholar 

  • George L, Romanowsky SM, Harper JF, Sharrock RA (2008) The ACA10 Ca 2 +-ATPase regulates adult vegetative development and inflorescence architecture in Arabidopsis. Plant Physiol 146:716–728

    Article  PubMed  CAS  Google Scholar 

  • Gevaudant F, Duby G, von Stedingk E, Zhao R, Morsomme P, Boutry M (2007) Expression of a constitutively activated plasma membrane H+-ATPase alters plant development and increases salt tolerance. Plant Physiol 144:1763–1776

    Article  PubMed  CAS  Google Scholar 

  • Glynn IM (2002) A hundred years of sodium pumping. Annu Rev Physiol 64:1–18

    Article  PubMed  CAS  Google Scholar 

  • Gomes E, Jakobsen MK, Axelsen KB, Geisler M, Palmgren MG (2000) Chilling tolerance in Arabidopsis involves ALA1, a member of a new family of putative aminophospholipid translocases. Plant Cell 12:2441–2453

    PubMed  CAS  Google Scholar 

  • Goosey L, Sharrock R (2001) The Arabidopsis compact inflorescence genes: phase-specific growth regulation and the determination of inflorescence architecture. Plant J 26:549–559

    Article  PubMed  CAS  Google Scholar 

  • Guerini D, Zecca-Mazza A, Carafoli E (2000) Single amino acid mutations in transmembrane domain 5 confer to the plasma membrane Ca2 + pump properties typical of the Ca2 + pump of endo(sarco)plasmic reticulum. J Biol Chem 275:31361–31368

    Article  PubMed  CAS  Google Scholar 

  • Hanikenne M, Talke IN, Haydon MJ, Lanz C, Nolte A, Motte P, Kroymann J, Weigel D, Kramer U (2008) Evolution of metal hyperaccumulation required cis-regulatory changes and triplication of HMA4. Nature 453:391–395

    Article  PubMed  CAS  Google Scholar 

  • Harper JF, Surowy TK, Sussman MR (1989) Molecular cloning and sequence of cDNA encoding the plasma membrane proton pump (H+-ATPase) of Arabidopsis thaliana. Proc Natl Acad Sci USA 86:1234–1238

    Article  PubMed  CAS  Google Scholar 

  • Higgins R, Lockwood T, Holley S, Yalamanchili R, Stratmann JW (2007) Changes in extracellular pH are neither required nor sufficient for activation of mitogen-activated protein kinases (MAPKs) in response to systemin and fusicoccin in tomato. Planta 225:1535–1546

    Article  PubMed  CAS  Google Scholar 

  • Holdaway-Clarke TL, Weddle NM, Kim S, Robi A, Parris C, Kunkel JG, Hepler PK (2003) Effect of extracellular calcium, pH and borate on growth oscillations in Lilium formosanum pollen tubes. J Exp Bot 54:65–72

    Article  PubMed  CAS  Google Scholar 

  • Hussain D, Haydon MJ, Wang Y, Wong E, Sherson SM, Young J, Camakaris J, Harper JF, Cobbett CS (2004) P-type ATPase heavy metal transporters with roles in essential zinc homeostasis in Arabidopsis. Plant Cell 16:1327–1339

    Article  PubMed  CAS  Google Scholar 

  • Jahn TP, Schulz A, Taipalensuu J, Palmgren MG (2002) Post-translational modification of plant plasma membrane H+-ATPase as a requirement for functional complementation of a yeast transport mutant. J Biol Chem 277:6353–6358

    Article  PubMed  CAS  Google Scholar 

  • Janicka-Russak M, Kabala K, Burzynski M, Klobus G (2008) Response of plasma membrane H+-ATPase to heavy metal stress in Cucumis sativus roots. J Exp Bot 59:3721–3728

    Article  PubMed  CAS  Google Scholar 

  • Kinoshita T, Shimazaki K (1999) Blue light activates the plasma membrane H+-ATPase by phosphorylation of the C-terminus in stomatal guard cells. EMBO J 18:5548–5558

    Article  PubMed  CAS  Google Scholar 

  • Kinoshita T, Doi M, Suetsugu N, Kagawa T, Wada M, Shimazaki K (2001) Phot1 and phot2 mediate blue light regulation of stomatal opening. Nature 414:656–660

    Google Scholar 

  • Kinoshita T, Shimazaki K (2001) Analysis of the phosphorylation level in guard-cell plasma membrane H+-ATPase in response to fusicoccin. Plant Cell Physiol 42:424–432

    Article  PubMed  CAS  Google Scholar 

  • Lalonde S, Wipf D, Frommer WB (2004) Transport mechanisms for organic forms of carbon and nitrogen between source and sink. Annu Rev Plant Biol 55:341–372

    Article  PubMed  CAS  Google Scholar 

  • Liu J, Elmore JM, Fuglsang AT, Palmgren MG, Staskawicz BJ, Coaker G (2009) RIN4 functions with plasma membrane H+-ATPases to regulate stomatal apertures during pathogen attack. PLoS Biol 7(6):e1000139

    Article  PubMed  Google Scholar 

  • Marin-Manzano MC, Rodriguez-Rosales MP, Belver A, Donaire JP, Venema K (2004) Heterologously expressed protein phosphatase calcineurin downregulates plant plasma membrane H+-ATPase activity at the post-translational level. FEBS Lett 576:266–270

    Article  PubMed  CAS  Google Scholar 

  • Maudoux O, Batoko H, Oecking C, Gevaert K, Vandekerckhove J, Boutry M, Morsomme P (2000) A plant plasma membrane H+-ATPase expressed in yeast is activated by phosphorylation at its penultimate residue and binding of 14-3-3 regulatory proteins in the absence of fusicoccin. J Biol Chem 275:17762–17770

    Article  PubMed  CAS  Google Scholar 

  • Meneghelli S, Fusca T, Luoni L, De Michelis MI (2008) Dual mechanism of activation of plant plasma membrane Ca2+-ATPase by acidic phospholipids: evidence for a phospholipid binding site which overlaps the calmodulin-binding site. Mol Membr Biol 25:539–546

    Article  PubMed  CAS  Google Scholar 

  • Merlot S, Leonhardt N, Fenzi F, Valon C, Costa M, Piette L, Vavasseur A, Genty B, Boivin K, Muller A, Giraudat J, Leung J (2007) Constitutive activation of a plasma membrane H+-ATPase prevents abscisic acid-mediated stomatal closure. EMBO J 26:3216–3226

    Article  PubMed  CAS  Google Scholar 

  • Mills RF, Francini A, Ferreira da Rocha PS, Baccarini PJ, Aylett M, Krijger GC, Williams LE (2005) The plant P1B-type ATPase AtHMA4 transports Zn and Cd and plays a role in detoxification of transition metals supplied at elevated levels. FEBS Lett 579:783–791

    Article  PubMed  CAS  Google Scholar 

  • Mitchell-Olds T (2001) Arabidopsis thaliana and its wild relatives: a model system for ecology and evolution. Trends Ecol Evol 16:693–700

    Article  Google Scholar 

  • Møller JV, Juul B, le Maire M (1996) Structural organization, ion transport, and energy transduction of P-type ATPases. Biochim Biophys Acta 1286:1–51

    Article  PubMed  Google Scholar 

  • Morsomme P, de Kerchove D’Exaerde A, De Meester S, Thines D, Goffeau A, Boutry M (1996) Single point mutations in various domains of a plant plasma membrane H+-ATPase expressed in Saccharomyces cerevisiae increase H+-pumping and permit yeast growth at low pH. EMBO J 15:5513–5526

    PubMed  CAS  Google Scholar 

  • Morsomme P, Dambly S, Maudoux O, Boutry M (1998) Single point mutations distributed in 10 soluble and membrane regions of the Nicotiana plumbaginifolia plasma membrane PMA2 H+-ATPase activate the enzyme and modify the structure of the C-terminal region. J Biol Chem 273:34837–34842

    Article  PubMed  CAS  Google Scholar 

  • Niittyla T, Fuglsang AT, Palmgren MG, Frommer WB, Schulze WX (2007) Temporal analysis of sucrose-induced phosphorylation changes in plasma membrane proteins of Arabidopsis. Mol Cell Proteomics 6:1711–1726

    Article  PubMed  CAS  Google Scholar 

  • Nuhse TS, Stensballe A, Jensen ON, Peck SC (2004) Phosphoproteomics of the Arabidopsis plasma membrane and a new phosphorylation site database. Plant Cell 16:2394–2405

    Article  PubMed  Google Scholar 

  • Ottmann C, Marco S, Jaspert N, Marcon C, Schauer N, Weyand M, Vandermeeren C, Duby G, Boutry M, Wittinghofer A, Rigaud JL, Oecking C (2007) Structure of a 14-3-3 coordinated hexamer of the plant plasma membrane H+-ATPase by combining X-ray crystallography and electron cryomicroscopy. Mol Cell 25:427–440

    Article  PubMed  CAS  Google Scholar 

  • Palmgren MG (1991) Regulation of plant plasma membrane H+-ATPase activity. Physiol Plant 83:314–323

    Article  CAS  Google Scholar 

  • Palmgren MG (2001) Plant plasma membrane H+-ATPases: powerhouses for nutrient uptake. Annu Rev Plant Phys Plant Mol Biol 52:817–845

    Article  CAS  Google Scholar 

  • Pardo JM, Serrano R (1989) Structure of a plasma membrane H+-ATPase gene from the plant Arabidopsis thaliana. J Biol Chem 264:8557–8562

    PubMed  CAS  Google Scholar 

  • Pedersen PL, Carafoli E (1987) Ion motive ATPases. Trends Biochem Sci 12:146–150

    Article  CAS  Google Scholar 

  • Pedersen BP, Buch-Pedersen MJ, Morth JP, Palmgren MG, Nissen P (2007) Crystal structure of the plasma membrane proton pump. Nature 450:1111–1114

    Article  PubMed  CAS  Google Scholar 

  • Pomorski T, Lombardi R, Riezman H, Devaux PF, van Meer G, Holthuis JCM (2003) Drs2p-related P-type ATPases Dnf1p and Dnf2p are required for phospholipid translocation across the yeast plasma membrane and serve a role in endocytosis. Mol Biol Cell 14:1240–1254

    Article  PubMed  CAS  Google Scholar 

  • Poulsen LR, López-Marqués RL, McDowell SC, Okkeri J, Licht D, Schulz A, Pomorski T, Harper JF, Palmgren MG (2008) The Arabidopsis P4-ATPase ALA3 localizes to the Golgi and requires a beta-subunit to function in lipid translocation and secretory vesicle formation. Plant Cell 20:658–676

    Article  PubMed  CAS  Google Scholar 

  • Qudeimat E, Faltusz AMC, Wheeler G, Lang D, Brownlee C, Reski R, Frank W (2008) A PIIB-type Ca2+-ATPase is essential for stress adaptation in Physcomitrella patens. Proc Natl Acad Sci USA 105:19555–19560

    Article  PubMed  CAS  Google Scholar 

  • Rea PA (2007) Plant ATP-binding cassette transporters. Annu Rev Plant Biol 58:347–375

    Article  PubMed  CAS  Google Scholar 

  • Reddy AS (2001) Calcium: silver bullet in signaling. Plant Sci 160:381–404

    Article  PubMed  CAS  Google Scholar 

  • Robertson WR, Clark K, Young JC, Sussman MR (2004) An Arabidopsis thaliana plasma membrane proton pump is essential for pollen development. Genetics 168:1677–1687

    Article  PubMed  CAS  Google Scholar 

  • Sanders D, Pelloux J, Brownlee C, Harper JF (2002) Calcium at the crossroads of signaling. Plant Cell 14:S401–S417

    PubMed  CAS  Google Scholar 

  • Schaller A, Oecking C (1999) Modulation of plasma membrane H+-ATPase activity differentially activates wound and pathogen defense responses in tomato plants. Plant Cell 11:263–272

    PubMed  CAS  Google Scholar 

  • Schiott M, Romanowsky SM, Baekgaard L, Jakobsen MK, Palmgren MG, Harper JF (2004) A plant plasma membrane Ca2 + pump is required for normal pollen tube growth and fertilization. Proc Natl Acad Sci USA 101:9502–9507

    Article  PubMed  CAS  Google Scholar 

  • Schumacher K (2006) Endomembrane proton pumps: connecting membrane and vesicle transport. Curr Opin Plant Biol 9:595–600

    Article  PubMed  CAS  Google Scholar 

  • Serrano R, Kielland-Brandt MC, Fink GR (1986) Yeast plasma membrane ATPase is essential for growth and has homology with (Na+ + K+), K+- and Ca2+-ATPases. Nature 319:689–693

    Article  PubMed  CAS  Google Scholar 

  • Shen H, He LF, Sasaki T, Yamamoto Y, Zheng SJ, Ligaba A, Yan XL, Ahn SJ, Yamaguchi M, Sasakawa H, Matsumoto H (2005) Citrate secretion coupled with the modulation of soybean root tip under aluminum stress. Up-regulation of transcription, translation, and threonine-oriented phosphorylation of plasma membrane H+-ATPase. Plant Physiol 138:287–296

    Article  PubMed  CAS  Google Scholar 

  • Sinclair SA, Sherson SM, Jarvis R, Camakaris J, Cobbett CS (2007) The use of the zinc-fluorophore, Zinpyr-1, in the study of zinc homeostasis in Arabidopsis roots. New Phytol 174:39–45

    Article  PubMed  CAS  Google Scholar 

  • Sondergaard TE, Schulz A, Palmgren MG (2004) Energization of transport processes in plants. Roles of the plasma membrane H+-ATPase. Plant Physiol 136:2475–2482

    Article  PubMed  CAS  Google Scholar 

  • Svennelid F, Olsson A, Piotrowski M, Rosenquist M, Ottman C, Larsson C, Oecking C, Sommarin M (1999) Phosphorylation of Thr-948 at the C terminus of the plasma membrane H+-ATPase creates a binding site for the regulatory 14-3-3 Protein. Plant Cell 11:2379–2392

    PubMed  CAS  Google Scholar 

  • Sze H, Liang F, Hwang I, Curran AC, Harper JF (2000) Diversity and regulation of plant Ca2 + pumps: insights from expression in yeast. Annu Rev Plant Physiol Plant Mol Biol 51:433–462

    Article  PubMed  CAS  Google Scholar 

  • Toyoshima C, Nakasako M, Nomura H, Ogawa H (2000) Crystal structure of the calcium pump of sarcoplasmic reticulum at 2.6 Å resolution. Nature 405:647–655

    Article  PubMed  CAS  Google Scholar 

  • Ueno K, Kinoshita T, Inoue SI, Emi T, Shimazaki K (2005) Biochemical characterization of plasma membrane H+-ATPase activation in guard cell protoplasts of Arabidopsis thaliana in response to blue light. Plant Cell Physiol 46:955–963

    Article  PubMed  CAS  Google Scholar 

  • Verret F, Gravot A, Auroy P, Leonhardt N, David P, Nussaume L, Vavasseur A, Richaud P (2004) Overexpression of AtHMA4 enhances root-to-shoot translocation of zinc and cadmium and plant metal tolerance. FEBS Lett 576:306–312

    Article  PubMed  CAS  Google Scholar 

  • Verret F, Gravot A, Auroy P, Preveral S, Forestier C, Vavasseur A, Richaud P (2005) Heavy metal transport by AtHMA4 involves the N-terminal degenerated metal binding domain and the C-terminal His11 stretch. FEBS Lett 579:1515–1522

    Article  PubMed  CAS  Google Scholar 

  • Verrier PJ, Bird D, Burla B, Dassa E, Forestier C, Geisler M, Klein M, Kolukisaoglu U, Lee Y, Martinoia E, Murphy A, Rea PA, Samuels L, Schulz B, Spalding EJ, Yazaki K, Theodoulou FL (2008) Plant ABC proteins-a unified nomenclature and updated inventory. Trends Plant Sci 13:151–159

    Article  PubMed  CAS  Google Scholar 

  • Verweij W, Spelt C, Di Sansebastiano GP, Vermeer J, Reale L, Ferranti F, Koes R, Quattrocchio F (2008) An H+ P-ATPase on the tonoplast determines vacuolar pH and flower colour. Nat Cell Biol 10:1456–1462

    Article  PubMed  CAS  Google Scholar 

  • Vitart V, Baxter I, Doerner P, Harper JF (2001) Evidence for a role in growth and salt resistance of a plasma membrane H+-ATPase in the root endodermis. Plant J 27:191–201

    Article  PubMed  CAS  Google Scholar 

  • White PJ, Broadley MR (2003) Calcium in plants. Ann Bot 92:487–511

    Article  PubMed  CAS  Google Scholar 

  • Williams LE, Mills RF (2005) P(1B)-ATPases – an ancient family of transition metal pumps with diverse functions in plants. Trends Plant Sci 10:491–502

    Article  PubMed  CAS  Google Scholar 

  • Yap KL, Kim J, Truong K, Sherman M, Yuan T, Ikura M (2000) Calmodulin target database. J Struct Funct Genomics 1:8–14

    Article  PubMed  CAS  Google Scholar 

  • Young JC, DeWitt ND, Sussman MR (1998) A transgene encoding a plasma membrane H+-ATPase that confers acid resistance in Arabidopsis thaliana seedlings. Genetics 149:501–507

    PubMed  CAS  Google Scholar 

  • Zhang W, Qin C, Zhao J, Wang X (2004) Phospholipase D alpha1-derived phosphatidic acid interacts with ABI1 phosphatase 2C and regulates abscisic acid signaling. Proc Natl Acad Sci USA 101:9508–9513

    Article  Google Scholar 

  • Zhao R, Dielen V, Kinet J-M, Boutry M (2000) Cosuppression of a plasma membrane H+-ATPase isoform impairs sucrose translocation, stomatal opening, plant growth, and male fertility. Plant Cell 12:535–546

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael G. Palmgren .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Palmgren, M.G., Bækgaard, L., López-Marqués, R.L., Fuglsang, A.T. (2011). Plasma Membrane ATPases. In: Murphy, A., Schulz, B., Peer, W. (eds) The Plant Plasma Membrane. Plant Cell Monographs, vol 19. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13431-9_7

Download citation

Publish with us

Policies and ethics