Skip to main content

The Hull of Fame: Lipid Signaling in the Plasma Membrane

  • Chapter
  • First Online:
The Plant Plasma Membrane

Part of the book series: Plant Cell Monographs ((CELLMONO,volume 19))

Abstract

As the outermost barrier to the apoplast, the plasma membrane is critical for sensing and propagating signals that arise at the cell surface. Plasma membrane lipids are important mediators of signaling and the phosphoinositides (PIs), and sphingolipids are the major classes of lipids implicated in plant signaling. In this chapter, we will summarize the major findings on plant PI signaling and on the emerging signaling role of sphingolipids.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbas HK, Tanaka T, Duke SO, Porter JK, Wray EM, Hodges L, Sessions AE, Wang E, Merrill AH Jr, Riley RT (1994) Fumonisin- and AAL-toxin-induced disruption of sphingolipid metabolism with accumulation of free sphingoid bases. Plant Physiol 106:1085–1093

    PubMed  CAS  Google Scholar 

  • Ahyayauch H, Villar AV, Alonso A, Goni FM (2005) Modulation of PI-Specific Phospholipase C by Membrane Curvature and Molecular Order. Biochemistry 44:11592–11600

    Article  PubMed  CAS  Google Scholar 

  • Ahyayauch H, Larijani B, Alonso A, Goñi FM (2006) Detergent solubilization of phosphatidylcholine bilayers in the fluid state: influence of the acyl chain structure. Biochim Biophys Acta 1758:190–196

    Article  PubMed  CAS  Google Scholar 

  • Anthony RG, Henriques R, Helfer A, Meszaros T, Rios G, Testerink C, Munnik T, Deak M, Koncz C, Bogre L (2004) A protein kinase target of a PDK1 signalling pathway is involved in root hair growth in Arabidopsis. EMBO J 23:572–581

    Article  PubMed  CAS  Google Scholar 

  • Balla T (2006) Phosphoinositide-derived messengers in endocrine signaling. J Endocrinol 188:135–153

    Article  PubMed  CAS  Google Scholar 

  • Bargmann BOR, Munnik T (2006) The role of phospholipase D in plant stress responses. Curr Opin Plant Biol 9:515–522

    Article  PubMed  CAS  Google Scholar 

  • Bessueille L, Sindt N, Guichardant M, Djerbi S, Teeri TT, Bulone V (2009) Plasma membrane microdomains from hybrid aspen cells are involved in cell wall polysaccharide biosynthesis. Biochem J 420(1):93–103

    Google Scholar 

  • Boss WF, Davis AJ, Im YJ, Galãvo RM, Perera IY (2006) Phosphoinositide metabolism: towards an understanding of subcellular signaling. In: Majumder AL, Biswas BB (eds) Biology of inositols and phosphoinositides, vol 39., pp 181–205

    Chapter  Google Scholar 

  • Boss WF, Lynch DV, Wang X (2008) Lipid-Mediated Signaling. In: Yang Z (ed) Intracellular signaling in plants: advances in molecular breeding toward drought and salt tolerant crops. Annual plant review, vol 33. Blackwell, Oxford, UK, pp 232–224

    Google Scholar 

  • Brandwagt BF, Mesbah LA, Takken FLW, Laurent PL, Kneppers TJA, Hille J, Nijkamp HJJ (2000) A longevity assurance gene homolog of tomato mediates resistance to Alternaria alternata f. sp. lycopersici toxins and fumonisin B1. Proc Natl Acad Sci USA 97:4961–4966

    Article  PubMed  CAS  Google Scholar 

  • Brandwagt BF, Kneppers TJA, Nijkamp HJJ, Hille J (2002) Overexpression of the tomato Asc-1 gene mediates high insensitivity to AAL toxins and fumonisin B1 in tomato hairy roots and confers resistance to Alternaria alternata f. sp. lycopersici in Nicotiana umbratica plants. Mol Plant Microbe Interact 15:35–42

    Article  PubMed  CAS  Google Scholar 

  • Braun M, Baluš ka F, von Witsch M, Menzel D (1999) Redistribution of actin, profilin and phosphatidylinositol-4, 5-bisphosphate in growing and maturing root hairs. Planta 209:435–443

    Article  PubMed  CAS  Google Scholar 

  • Brodersen P, Petersen M, Pike HM, Olszak B, Sr S, Ødum N, Jørgensen LB, Brown RE, Mundy J (2002) Knockout of Arabidopsis ACCELERATED-CELL-DEATH11 encoding a sphingosine transfer protein causes activation of programmed cell death and defense. Genes Dev 16:490–502

    Article  PubMed  CAS  Google Scholar 

  • Burden LM, Rao VD, Murray D, Ghirlando R, Doughman SD, Anderson RA, Hurley JH (1999) The flattened face of type II: phosphatidylinositol phosphate kinase binds acidic phospholipid membranes. Biochemistry 38:15141–15149

    Article  PubMed  CAS  Google Scholar 

  • Carricaburu V, Fournier B (2001) Phosphoinositide fatty acids regulate phosphatidylinositol 5-kinase, phospholipase C and protein kinase C activities. Eur J Biochem 268:1238–1249

    Article  PubMed  CAS  Google Scholar 

  • Chen M, Markham JE, Dietrich CR, Jaworski JG, Cahoon EB (2008) Sphingolipid long-chain base hydroxylation is important for growth and regulation of sphingolipid content and composition in Arabidopsis. Plant Cell 20:1862–1878

    Article  PubMed  CAS  Google Scholar 

  • Cho M, Boss W (1995) Transmembrane signaling and phosphoinositides. In: Galbraith DW, Bohnert HJ, Bourque DP (eds) Methods in cell biology, vol 49. Academic Press, New York, pp 543–553

    Google Scholar 

  • Cho MH, Shears SB, Boss WF (1993) Changes in phosphatidylinositol metabolism in response to hyperosmotic stress in Daucus carota L. cells grown in suspension culture. Plant Physiol 103:637–647

    Article  PubMed  CAS  Google Scholar 

  • Cho H, Kim Y, Ho W (2006) Phosphate number and acyl chain length determine the subcellular location and lateral mobility of phosphoinositides. Mol Cells 22:97–103

    PubMed  CAS  Google Scholar 

  • Coursol S, Fan LM, Stunff HL, Spiegel S, Gilroy S, Assmann SM (2003) Sphingolipid signalling in Arabidopsis guard cells involves heterotrimeric G proteins. Nature 423:651–654

    Article  PubMed  CAS  Google Scholar 

  • Coursol S, Le Stunff H, Lynch DV, Gilroy S, Assmann SM, Spiegel S (2005) Arabidopsis sphingosine kinase and the effects of phytosphingosine-1-phosphate on stomatal aperture. Plant Physiol 137:724–737

    Article  PubMed  CAS  Google Scholar 

  • Crain RC, Yueh YG (1995) Phosphoinositide signalling in plant and algal responses to physiological stimuli. Biochem Soc Trans 23:853–856

    PubMed  CAS  Google Scholar 

  • de Jong CF, Laxalt AM, Bargmann BOR, de Wit PJGM, Joosten MHAJ, Munnik T (2004) Phosphatidic acid accumulation is an early response in the Cf-4/Avr4 interaction. Plant J 39:1–12

    Article  PubMed  CAS  Google Scholar 

  • Delon C, Manifava M, Wood E, Thompson D, Krugmann S, Pyne S, Ktistakis NT (2004) Sphingosine kinase 1 is an intracellular effector of phosphatidic acid. J Biol Chem 279:44763–44774

    Article  PubMed  CAS  Google Scholar 

  • DeWald DB, Torabinejad J, Jones CA, Shope JC, Cangelosi AR, Thompson JE, Prestwich GD, Hama H (2001) Rapid accumulation of phosphatidylinositol 4, 5-bisphosphate and inositol 1, 4, 5-trisphosphate correlates with calcium mobilization in salt-stressed Arabidopsis. Plant Physiol 126:759–769

    Article  PubMed  CAS  Google Scholar 

  • Di Paolo G, De Camilli P (2006) Phosphoinositides in cell regulation and membrane dynamics. Nature 443:651–657

    Article  PubMed  CAS  Google Scholar 

  • Dove SK, Cooke FT, Douglas MR, Sayers LG, Parker PJ, Michell RH (1997) Osmotic stress activates phosphatidylinositol-3, 5-bisphosphate synthesis. Nature 390:187–192

    Article  PubMed  CAS  Google Scholar 

  • Dowd PE, Coursol S, Skirpan AL, Kao TH, Gilroy S (2006) Petunia phospholipase C1 is involved in pollen tube growth. Plant Cell 18:1438–1453

    Article  PubMed  CAS  Google Scholar 

  • Drøbak BK, Watkins PA (2000) Inositol(1, 4, 5)trisphosphate production in plant cells: an early response to salinity and hyperosmotic stress. FEBS Lett 481:240–244

    Article  PubMed  Google Scholar 

  • Drøbak BK, Franklin-Tong VE, Staiger CJ (2004) The role of the actin cytoskeleton in plant cell signaling. New Phytol 163:13–30

    Article  CAS  Google Scholar 

  • Dunn TM, Lynch DV, Michaelson LV, Napier JA (2004) A post-genomic approach to understanding sphingolipid metabolism in Arabidopsis thaliana. Ann Bot 93:483–497

    Article  PubMed  CAS  Google Scholar 

  • Farmer PK, Choi JH (1999) Calcium and phospholipid activation of a recombinant calcium-dependent protein kinase (DcCPK1) from carrot (Daucus carota L.). Biochim Biophys Acta 1434:6–17

    Article  PubMed  CAS  Google Scholar 

  • Furt F, König S, Bessoule JJ, Sargueil F, Zallot R, Stanislas T, Noirot E, Lherminier J, Simon-Plas F, Heilmann I, Mongrand S (2010) Polyphosphoinositides are enriched in plant membrane rafts and form microdomains in the plasma membrane. Plant Physiol 152:2173–2187

    Google Scholar 

  • Gamper N, Shapiro MS (2007) Regulation of ion transport proteins by membrane phosphoinositides. Nat Rev Neurosci 8:921–934

    Article  PubMed  CAS  Google Scholar 

  • Grennan AK (2007) Lipid rafts in plants. Plant Physiol 143:1083–1085

    Article  PubMed  CAS  Google Scholar 

  • Gubbels MJ, Vaishnava S, Boot N, Dubremetz J-F, Striepen B (2006) A MORN-repeat protein is a dynamic component of the Toxoplasma gondii cell division apparatus. J Cell Sci 119:2236–2245

    Article  PubMed  CAS  Google Scholar 

  • Hannun YA, Obeid LM (2008) Principles of bioactive lipid signalling: lessons from sphingolipids. Nat Rev Mol Cell Biol 9:139–150

    Article  PubMed  CAS  Google Scholar 

  • Heilmann I (2008) Towards understanding the function of stress-inducible PtdIns(4, 5)P2 in plants. Commun Integr Biol 1:204–206

    Article  PubMed  Google Scholar 

  • Heilmann I (2009) Using genetic tools to understand plant phosphoinositide signalling. Trends Plant Sci 14:171–179

    Article  PubMed  CAS  Google Scholar 

  • Heilmann I, Perera IY, Gross W, Boss WF (1999) Changes in phosphoinositide metabolism with days in culture affect signal transduction pathways in Galdieria sulphuraria. Plant Physiol 229:1331–1339

    Article  Google Scholar 

  • Heilmann I, Perera IY, Gross W, Boss WF (2001) Plasma membrane phosphatidylinositol 4, 5-bisphosphate levels decrease with time in culture. Plant Physiol 126:1507–1518

    Article  PubMed  CAS  Google Scholar 

  • Helling D, Possart A, Cottier S, Klahre U, Kost B (2006) pollen tube tip growth depends on plasma membrane polarization mediated by tobacco PLC3 activity and endocytic membrane recycling. Plant Cell 18:3519–3534

    Article  PubMed  CAS  Google Scholar 

  • Huang CL (2007) Complex roles of PIP2 in the regulation of ion channels and transporters. Am J Physiol Renal Physiol 293:F1761–F1765

    Article  PubMed  CAS  Google Scholar 

  • Huang S, Gao L, Blanchoin L, Staiger CJ (2006) Heterodimeric capping protein from Arabidopsis is regulated by phosphatidic acid. Mol Biol Cell 17:1946–1958

    Article  PubMed  CAS  Google Scholar 

  • Im YJ, Davis AJ, Perera IY, Johannes E, Allen NS, Boss WF (2007a) The N-terminal membrane occupation and recognition nexus domain of Arabidopsis phosphatidylinositol phosphate kinase 1 regulates enzyme activity. J Biol Chem 282:5443–5452

    Article  PubMed  CAS  Google Scholar 

  • Im YJ, Perera IY, Brglez I, Davis AJ, Stevenson-Paulik J, Phillippy BQ, Johannes E, Allen NS, Boss WF (2007b) Increasing plasma membrane phosphatidylinositol(4, 5)bisphosphate biosynthesis increases phosphoinositide metabolism in Nicotiana tabacum. Plant Cell 19:1603–1616

    Article  PubMed  CAS  Google Scholar 

  • Imai H, Nishiura H (2005) Phosphorylation of sphingoid long-chain bases in Arabidopsis: functional characterization and expression of the first sphingoid long-chain base kinase gene in plants. Plant Cell Physiol 46:375–380

    Article  PubMed  CAS  Google Scholar 

  • Ischebeck T, Stenzel I, Heilmann I (2008) Type B phosphatidylinositol-4-phosphate 5-kinases mediate Arabidopsis and Nicotiana tabacum pollen tube growth by regulating apical pectin secretion. Plant Cell 20:3312–3330

    Article  PubMed  CAS  Google Scholar 

  • Janmey PA, Lindberg U (2004) Cytoskeletal regulation: rich in lipids. Nat Rev Mol Cell Biol 5:658–666

    Article  PubMed  CAS  Google Scholar 

  • Johnson KR, Becker KP, Facchinetti MM, Hannun YA, Obeid LM (2002) PKC-dependent activation of sphingosine kinase 1 and translocation to the plasma membrane. Extracellular release of sphingosine-1-phosphate induced by phorbol 12-myristate 13-acetate (PMA). J Biol Chem 277:35257–35262

    Article  PubMed  CAS  Google Scholar 

  • König S, Mosblech A, Heilmann I (2007) Stress-inducible and constitutive phosphoinositide pools have distinctive fatty acid patterns in Arabidopsis thaliana. FASEB J 21:1958–1967

    Article  PubMed  CAS  Google Scholar 

  • König S, Ischebeck T, Lerche J, Stenzel I, Heilmann I (2008) Salt-stress-induced association of phosphatidylinositol 4, 5-bisphosphate with clathrin-coated vesicles in plants. Biochem J 415:387–399

    Article  PubMed  Google Scholar 

  • Kost B (2008) Spatial control of Rho (Rac-Rop) signaling in tip-growing plant cells. Trends Cell Biol 18:119–127

    Article  PubMed  CAS  Google Scholar 

  • Kost B, Lemichez E, Spielhofer P, Hong Y, Tolias K, Carpenter C, Chua N-H (1999) Rac homologues and compartmentalized phosphatidylinositol 4, 5-bisphosphate act in a common pathway to regulate polar pollen tube growth. J Cell Biol 145:317–330

    Article  PubMed  CAS  Google Scholar 

  • Krauss M, Haucke V (2007) Phosphoinositide-metabolizing enzymes at the interface between membrane traffic and cell signalling. EMBO Rep 8:241–246

    Article  PubMed  CAS  Google Scholar 

  • Krinke O, Novotna Z, Valentova O, Martinec J (2007) Inositol trisphosphate receptor in higher plants: is it real? J Exp Bot 58:361–376

    Article  PubMed  CAS  Google Scholar 

  • Kusano H, Testerink C, Vermeer JEM, Tsuge T, Shimada H, Oka A, Munnik T, Aoyama T (2008) The Arabidopsis phosphatidylinositol phosphate 5-kinase PIP5K3 is a key regulator of root hair tip growth. Plant Cell 20:367–380

    Article  PubMed  CAS  Google Scholar 

  • Le Stunff H, Milstein S, Spiegel S (2004) Generation and metabolism of bioactive sphingosine-1-phosphate. J Cell Biochem 92:882–899

    Article  PubMed  CAS  Google Scholar 

  • Lee YJ, Yang Z (2008) Tip growth: signaling in the apical dome. Curr Opin Plant Biol 11:662–671

    Article  PubMed  CAS  Google Scholar 

  • Lee Y, Kim Y-W, Jeon BW, Park K-Y, Suh SJ, Seo J, Kwak JM, Martinoia E, Hwang I, Lee Y (2007) Phosphatidylinositol 4, 5-bisphosphate is important for stomatal opening. Plant J 52:803–816

    Article  PubMed  CAS  Google Scholar 

  • Liang H, Yao N, Song JT, Luo S, Lu H, Greenberg JT (2003) Ceramides modulate programmed cell death in plants. Genes Dev 17:2636–2641

    Article  PubMed  CAS  Google Scholar 

  • Liu H, Sugiura M, Nava VE, Edsall LC, Kono K, Poulton S, Milstein S, Kohama T, Spiegel S (2000) Molecular cloning and functional characterization of a novel mammalian sphingosine kinase type 2 isoform. J Biol Chem 275:19513–19520

    Article  PubMed  CAS  Google Scholar 

  • Liu K, Li L, Luan S (2005) An essential function of phosphatidylinositol phosphates in activation of plant shaker-type K+ channels. Plant J 42:433–443

    Article  PubMed  CAS  Google Scholar 

  • Löfke C, Ischebeck T, König S, Freitag S, Heilmann I (2008) Alternative metabolic fates of phosphatidylinositol produced by phosphatidylinositol synthase isoforms in Arabidopsis thaliana. Biochem J 413:115–124

    Article  PubMed  CAS  Google Scholar 

  • Lou Y, Ma H, Lin W-H, Chu Z-Q, Mueller-Roeber B, Xu Z-H, Xue H-W (2006) The highly charged region of plant β-type phosphatidylinositol 4-kinase is involved in membrane targeting and phospholipid binding. Plant Mol Biol 60:729–746

    Article  PubMed  CAS  Google Scholar 

  • Lynch DV, Dunn TM (2004) An introduction to plant sphingolipids and a review of recent advances in understanding their metabolism and function. New Phytol 161:677–702

    Article  CAS  Google Scholar 

  • Ma X, Shor O, Diminshtein S, Yu L, Im YJ, Perera I, Lomax A, Boss WF, Moran N (2009) Phosphatidylinositol (4, 5)bisphosphate inhibits K+-efflux channel activity in NT1 tobacco cultured cells. Plant Physiol 149:1127–1140

    Article  PubMed  CAS  Google Scholar 

  • Maple J, Vojta L, Soll J, Møller SG (2007) ARC3 is a stromal Z-ring accessory protein essential for plastid division. EMBO Rep 8:293–299

    Article  PubMed  CAS  Google Scholar 

  • Marion J, Bach L, Bellec Y, Meyer C, Gissot L, Faure J-D (2008) Systematic analysis of protein subcellular localization and interaction using high-throughput transient transformation of Arabidopsis seedlings. Plant J 56:169–179

    Article  PubMed  CAS  Google Scholar 

  • Markham JE, Jaworski JG (2007) Rapid measurement of sphingolipids from Arabidopsis thaliana by reversed-phase high-performance liquid chromatography coupled to electrospray ionization tandem mass spectrometry. Rapid Commun Mass Spectrom 21:1304–1314

    Article  PubMed  CAS  Google Scholar 

  • Markham JE, Li J, Cahoon EB, Jaworski JG (2006) Separation and identification of major plant sphingolipid classes from leaves. J Biol Chem 281:22684–22694

    Article  PubMed  CAS  Google Scholar 

  • McLaughlin S, Murray D (2005) Plasma membrane phosphoinositide organization by protein electrostatics. Nature 438:605–611

    Article  PubMed  CAS  Google Scholar 

  • Meijer HJ, Munnik T (2003) Phospholipid-based signaling in plants. Annu Rev Plant Biol 54:265–306

    Article  PubMed  CAS  Google Scholar 

  • Memon AR, Chen QY, Boss WF (1989) Inositol phospholipids activate plasma membrane ATPase in plants. Biochem Biophys Res Commun 162:1295–1301

    Article  PubMed  CAS  Google Scholar 

  • Men S, Boutté Y, Ikeda Y, Li X, Palme K, Stierhof YD, Hartmann MA, Moritz T, Grebe M (2008) Sterol-dependent endocytosis mediates post-cytokinetic acquisition of PIN2 auxin efflux carrier polarity. Nat Cell Biol 10:237–244

    Article  PubMed  CAS  Google Scholar 

  • Michaelson LV, Zauner S, Markham JE, Haslam RP, Desikan R, Mugford S, Albrecht S, Warnecke D, Sperling P, Heinz E, Napier JA (2009) Functional characterization of a higher plant sphingolipid {Delta}4-desaturase: defining the role of sphingosine and sphingosine-1-phosphate in Arabidopsis. Plant Physiol 149:487–498

    Article  PubMed  CAS  Google Scholar 

  • Morel J, Claverol S, Mongrand S, Furt F, Fromentin J, Bessoule J-J, Blein J-P, Simon-Plas F (2006) Proteomics of plant detergent-resistant membranes. Mol Cell Proteomics 5:1396–1411

    Article  PubMed  CAS  Google Scholar 

  • Mosblech A, Konig S, Stenzel I, Grzeganek P, Feussner I, Heilmann I (2008) Phosphoinositide and inositolpolyphosphate signalling in defense responses of Arabidopsis thaliana challenged by mechanical wounding. Mol Plant 1:249–261

    Article  PubMed  CAS  Google Scholar 

  • Mueller-Roeber B, Pical C (2002) Inositol phospholipid metabolism in Arabidopsis. Characterized and putative isoforms of inositol phospholipid kinase and phosphoinositide-specific phospholipase C. Plant Physiol 130:22–46

    Article  PubMed  CAS  Google Scholar 

  • Mukherjee S, Maxfield FR (2000) Role of membrane organization and membrane domains in endocytic lipid trafficking. Traffic 1:203–211

    Article  PubMed  CAS  Google Scholar 

  • Mukherjee S, Soe TT, Maxfield FR (1999) Endocytic sorting of lipid analogues differing solely in the chemistry of their hydrophobic tails. J Cell Biol 144:1271–1284

    Article  PubMed  CAS  Google Scholar 

  • Munnik T, Testerink C (2009) Plant phospholipid signaling – “in a nutshell”. J Lipid Res 50:S260–S265

    Article  PubMed  CAS  Google Scholar 

  • Ng CKY, Hetherington AM (2001) Sphingolipid-mediated signalling in plants. Ann Bot 88:957–965

    Article  CAS  Google Scholar 

  • Ng CKY, Carr K, McAinsh MR, Powell B, Hetherington AM (2001) Drought-induced guard cell signal transduction involves sphingosine-1-phosphate. Nature 410:596–599

    Article  PubMed  CAS  Google Scholar 

  • Nilius B, Owsianik G, Voets T (2008) Transient receptor potential channels meet phosphoinositides. EMBO J 27:2809–2816

    Article  PubMed  CAS  Google Scholar 

  • Pandey S, Assmann SM (2004) The Arabidopsis putative G protein-coupled receptor GCR1 interacts with the G protein alpha subunit GPA1 and regulates abscisic acid signaling. Plant Cell 16:1616–1632

    Article  PubMed  CAS  Google Scholar 

  • Perera IY, Heilmann I, Boss WF (1999) Transient and sustained increases in inositol 1, 4, 5-trisphosphate precede the differential growth response in gravistimulated maize pulvini. Proc Natl Acad Sci USA 96:5838–5843

    Article  PubMed  CAS  Google Scholar 

  • Perera IY, Love J, Heilmann I, Thompson WF, Boss WF (2002) Up-regulation of phosphoinositide metabolism in tobacco cells constitutively expressing the human type I inositol polyphosphate 5-phosphatase. Plant Physiol 129:1795–1806

    Article  PubMed  CAS  Google Scholar 

  • Perera IY, Davis AJ, Galanopoulou D, Im YJ, Boss WF (2005) Characterization and comparative analysis of Arabidopsis phosphatidylinositol phosphate 5-kinase 10 reveals differences in Arabidopsis and human phosphatidylinositol phosphate kinases. FEBS Lett 579:3427–3432

    Article  PubMed  CAS  Google Scholar 

  • Perera IY, Hung C-Y, Moore CD, Stevenson-Paulik J, Boss WF (2008) Transgenic Arabidopsis plants expressing the type 1 Inositol 5-phosphatase exhibit increased drought tolerance and altered abscisic acid signaling. Plant Cell 20:2876–2893

    Article  PubMed  CAS  Google Scholar 

  • Pical C, Westergren T, Dove SK, Larsson C, Sommarin M (1999) Salinity and hyperosmotic stress induce rapid increases in phosphatidylinositol 4, 5-bisphosphate, diacylglycerol pyrophosphate, and phosphatidylcholine in Arabidopsis thaliana cells. J Biol Chem 274:38232–38240

    Article  PubMed  CAS  Google Scholar 

  • Pitson SM, D’Andrea RJ, Vandeleur L, Moretti PA, Xia P, Gamble JR, Vadas MA, Wattenberg BW (2000) Human sphingosine kinase: purification, molecular cloning and characterization of the native and recombinant enzymes. Biochem J 350:429–441

    Article  PubMed  CAS  Google Scholar 

  • Pitson SM, Moretti PA, Zebol JR, Lynn HE, Xia P, Vadas MA, Wattenberg BW (2003) Activation of sphingosine kinase 1 by ERK1/2-mediated phosphorylation. EMBO J 22:5491–5500

    Article  PubMed  CAS  Google Scholar 

  • Pitson SM, Xia P, Leclercq TM, Moretti PA, Zebol JR, Lynn HE, Wattenberg BW, Vadas MA (2005) Phosphorylation-dependent translocation of sphingosine kinase to the plasma membrane drives its oncogenic signalling. J Exp Med 201:49–54

    Article  PubMed  CAS  Google Scholar 

  • Preuss ML, Schmitz AJ, Thole JM, Bonner HKS, Otegui MS, Nielsen E (2006) A role for the RabA4b effector protein PI-4K{beta}1 in polarized expansion of root hair cells in Arabidopsis thaliana. J Cell Biol 172:991–998

    Article  PubMed  CAS  Google Scholar 

  • Rao VD, Misra S, Boronenkov IV, Anderson RA, Hurley JH (1998) Structure of type II[beta] phosphatidylinositol phosphate kinase: a protein kinase fold flattened for interfacial phosphorylation. Cell 94:829–839

    Article  PubMed  CAS  Google Scholar 

  • Raucher D, Stauffer T, Chen W, Shen K, Guo S, York JD, Sheetz MP, Meyer T (2000) Phosphatidylinositol 4, 5-bisphosphate functions as a second messenger that regulates cytoskeleton-plasma membrane adhesion. Cell 100:221–228

    Article  PubMed  CAS  Google Scholar 

  • Ruelland E, Cantrel C, Gawer M, Kader J-C, Zachowski A (2002) Activation of phospholipases C and D Is an early response to a cold exposure in Arabidopsis suspension cells. Plant Physiol 130:999–1007

    Article  PubMed  CAS  Google Scholar 

  • Ryan PR, Liu Q, Sperling P, Dong B, Franke S, Delhaize E (2007) A higher plant {Delta}8 sphingolipid desaturase with a preference for (Z)-isomer formation confers aluminum tolerance to yeast and plants. Plant Physiol 144:1968–1977

    Article  PubMed  CAS  Google Scholar 

  • Schenck M, Carpinteiro A, Grassmé H, Lang F, Gulbins E (2007) Ceramide: physiological and pathophysiological aspects. Arch Biochem Biophys 462:171–175

    Article  PubMed  CAS  Google Scholar 

  • Schmid AC, Wise HM, Mitchell CA, Nussbaum R, Woscholski R (2004) Type II phosphoinositide 5-phosphatases have unique sensitivities towards fatty acid composition and head group phosphorylation. FEBS Lett 576:9–13

    Article  PubMed  CAS  Google Scholar 

  • Shimada H, Koizumi M, Kuroki K, Mochizuki M, Fujimoto H, Ohta H, Masuda T, Takamiya KI (2004) ARC3, a chloroplast division factor, is a chimera of prokaryotic FtsZ and part of eukaryotic phosphatidylinositol-4-phosphate 5-kinase. Plant Cell Physiol 45:960–967

    Article  PubMed  CAS  Google Scholar 

  • Skirpan AL, Dowd PE, Sijacic P, Jaworski CJ, Gilroy S, Kao TH et al (2006) Identification and characterization of PiORP1, a Petunia oxysterol-binding-protein related protein involved in receptor-kinase mediated signaling in pollen, and analysis of the ORP gene family in Arabidopsis. Plant Mol Biol 61:553–565.

    Google Scholar 

  • Sousa E, Kost B, Malho R (2008) Arabidopsis phosphatidylinositol-4-monophosphate 5-kinase 4 regulates pollen tube growth and polarity by modulating membrane recycling. Plant Cell 20:3050–3064

    Article  PubMed  CAS  Google Scholar 

  • Spassieva SD, Markham JE, Hille J (2002) The plant disease resistance gene Asc-1 prevents disruption of sphingolipid metabolism during AAL-toxin-induced programmed cell death. Plant J 32:561–572

    Article  PubMed  CAS  Google Scholar 

  • Spiegel S, Milstein S (2002) Sphingosine 1-phosphate, a key cell signaling molecule. J Biol Chem 277:25851–25854

    Article  PubMed  CAS  Google Scholar 

  • Spiegel S, Milstein S (2003) Sphingosine-1-phosphate: an enigmatic signalling lipid. Nat Rev Mol Cell Biol 4:397–407

    Article  PubMed  CAS  Google Scholar 

  • Staiger CJ, Blanchoin L (2006) Actin dynamics: old friends with new stories. Curr Opin Plant Biol 9:554–562

    Article  PubMed  CAS  Google Scholar 

  • Stenzel I, Ischebeck T, Konig S, Holubowska A, Sporysz M, Hause B, Heilmann I (2008) The type B phosphatidylinositol-4-phosphate 5-kinase 3 is essential for root hair formation in Arabidopsis thaliana. Plant Cell 20:124–141

    Article  PubMed  CAS  Google Scholar 

  • Stevenson JM, Perera IY, Heilmann I, Persson S, Boss WF (2000) Inositol signaling and plant growth. Trends Plant Sci 5:252–258

    Article  PubMed  CAS  Google Scholar 

  • Stevenson-Paulik J, Love J, Boss WF (2003) Differential regulation of two Arabidopsis type III phosphatidylinositol 4-kinase isoforms. A regulatory role for the Pleckstrin homology domain. Plant Physiol 132:1053–1064

    Article  PubMed  CAS  Google Scholar 

  • Takeshima H, Komazaki S, Nishi M, Iino M, Kangawa K (2000) Junctophilins: a novel family of junctional membrane complex proteins. Mol Cell 6:11–22

    PubMed  CAS  Google Scholar 

  • Testerink C, Munnik T (2005) Phosphatidic acid: a multifunctional stress signaling lipid in plants. Trends Plant Sci 10:368–375

    Article  PubMed  CAS  Google Scholar 

  • Testerink C, Larsen PB, van der Does D, van Himbergen JAJ, Munnik T (2007) Phosphatidic acid binds to and inhibits the activity of Arabidopsis CTR1. J Exp Bot 58:3905–3914

    Article  PubMed  CAS  Google Scholar 

  • Testerink C, Larsen PB, McLoughlin F, Dvd D, JAJv H, Munnik T (2008) PA, a stress-induced short cut to switch-on ethylene signalling by switching-off CTR1? Plant Signal Behav 3:681–683

    Article  PubMed  Google Scholar 

  • Thole JM, Nielsen E (2008) Phosphoinositides in plants: novel functions in membrane trafficking. Curr Opin Plant Biol 11:620–631

    Article  PubMed  CAS  Google Scholar 

  • Thole JM, Vermeer JEM, Zhang Y, Gadella TWJ Jr, Nielsen E (2008) Root hair defective4 encodes a phosphatidylinositol-4-phosphate phosphatase required for proper root hair development in Arabidopsis thaliana. Plant Cell 20:381–395

    Article  PubMed  CAS  Google Scholar 

  • Townley H, McDonald K, Jenkins G, Knight M, Leaver C (2005) Ceramides induce programmed cell death in Arabidopsis cells in a calcium-dependent manner. Biol Chem 386:161–166

    Article  PubMed  CAS  Google Scholar 

  • Tsegaye Y, Richardson CG, Bravo JE, Mulcahy BJ, Lynch DV, Markham JE, Jaworski JG, Chen M, Cahoon EB, Dunn TM (2007) Arabidopsis mutants lacking long chain base phosphate lyase are fumonisin-sensitive and accumulate trihydroxy-18:1 long chain base phosphate. J Biol Chem 282:28195–28206

    Article  PubMed  CAS  Google Scholar 

  • van Leeuwen W, Vermeer JEM, Gadella TWJ Jr, Munnik T (2007) Visualization of phosphatidylinositol 4, 5-bisphosphate in the plasma membrane of suspension-cultured tobacco BY-2 cells and whole Arabidopsis seedlings. Plant J 52:1014–1026

    Article  PubMed  CAS  Google Scholar 

  • van Schooten B, Testerink C, Munnik T (2006) Signalling diacylglycerol pyrophosphate, a new phosphatidic acid metabolite. Biochim Biophys Acta 1761:151–159

    Article  PubMed  CAS  Google Scholar 

  • Várnai P, Balla T (1998) Visualization of phosphoinositides that bind pleckstrin homology domains: calcium- and agonist-induced dynamic changes and relationship to myo-[3H]inositol-labeled phosphoinositide pools. J Cell Biol 143:501–510

    Article  PubMed  Google Scholar 

  • Vermeer JEM, van Leeuwen W, Tobeña-Santamaria R, Laxalt AM, Jones DR, Divecha N, Gadella TWJ Jr, Munnik T (2006) Visualization of PtdIns3P dynamics in living plant cells. Plant J 47:687–700

    Article  PubMed  CAS  Google Scholar 

  • Vermeer JEM, Thole JM, Goedhart J, Nielsen E, Munnik T, Gadella TWJ Jr (2009) Imaging phosphatidylinositol 4-phosphate dynamics in living plant cells. Plant J 57:356–372

    Article  PubMed  CAS  Google Scholar 

  • Vesper H, Schmelz E-M, Nikolova-Karakashian MN, Dillehay DL, Lynch DV, Merrill AH Jr (1999) Sphingolipids in food and the emerging importance of sphingolipids to nutrition. J Nutr 129:1239–1250

    PubMed  CAS  Google Scholar 

  • Vincent P, Chua M, Nogue F, Fairbrother A, Mekeel H, Xu Y, Allen N, Bibikova TN, Gilroy S, Bankaitis VA (2005) A Sec14p-nodulin domain phosphatidylinositol transfer protein polarizes membrane growth of Arabidopsis thaliana root hairs. J Cell Biol 168:801–812

    Article  PubMed  CAS  Google Scholar 

  • Wang X (2005) Regulatory functions of phospholipase D and phosphatidic acid in plant growth, development, and stress responses. Plant Physiol 139:566–573

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Devaiah SP, Zhang W, Welti R (2006) Signaling functions of phosphatidic acid. Prog Lipid Res 45:250–278

    Article  PubMed  CAS  Google Scholar 

  • Warnecke D, Heinz E (2003) Recently discovered functions of glucosylceramides in plants and fungi. Cell Mol Life Sci 60:919–941

    PubMed  CAS  Google Scholar 

  • Wattenberg BW, Pitson SM, Raben DM (2006) The sphingosine and diacylglycerol kinase superfamily of signaling kinases: localization as a key to signaling function. J Lipid Res 47:1128–1139

    Article  PubMed  CAS  Google Scholar 

  • Welti R, Wang X (2004) Lipid species profiling: a high-throughput approach to identify lipid compositional changes and determine the function of genes involved in lipid metabolism and signaling. Curr Opin Plant Biol 7:337–344

    Article  PubMed  CAS  Google Scholar 

  • Williams ME, Torabinejad J, Cohick E, Parker K, Drake EJ, Thompson JE, Hortter M, Dewald DB (2005) Mutations in the Arabidopsis phosphoinositide phosphatase gene SAC9 lead to overaccumulation of PtdIns(4, 5)P2 and constitutive expression of the stress-response pathway. Plant Physiol 138:686–700

    Article  PubMed  CAS  Google Scholar 

  • Worrall D, Liang YK, Alvarez S, Holroyd GH, Spiegel S, Panagopulos M, Gray JE, Hetherington AM (2008) Involvement of sphingosine kinase in plant cell signalling. Plant J 56:64–72

    Article  PubMed  CAS  Google Scholar 

  • Wright BS, Snow JW, O’Brien TC, Lynch DV (2003) Synthesis of 4-hydroxysphinganine and characterization of sphinganine hydroxylase activity in corn. Arch Biochem Biophys 415:184–192

    Article  PubMed  CAS  Google Scholar 

  • Xiong TC, Coursol S, Grat S, Ranjeva R, Mazars C (2008) Sphingolipid metabolites selectively elicit increases in nuclear calcium concentration in cell suspension cultures and in isolated nuclei of tobacco. Cell Calcium 43:29–37

    Article  PubMed  CAS  Google Scholar 

  • Zappel NF, Panstruga R (2008) Heterogeneity and lateral compartmentalization of plant plasma membranes. Curr Opin Plant Biol 11:632–640

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Kiechle FL (2004) Glycosphingolipids in health and disease. Ann Clin Lab Sci 34:3–13

    PubMed  Google Scholar 

  • Zhang W, Qin C, Zhao J, Wang X (2004) Phospholipase Dα1-derived phosphatidic acid interacts with ABI1 phosphatase 2C and regulates abscisic acid signaling. Proc Natl Acad Sci USA 101:9508–9513

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

IH gratefully acknowledges an Emmy-Noether-grant He3424/1 from the German Research foundation (DFG) and IYP gratefully acknowledges funding from NSF (MCB#0718452) and USDA-NIFA (# 2009-65114-06019).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Im, Y.J., Heilmann, I., Perera, I.Y. (2011). The Hull of Fame: Lipid Signaling in the Plasma Membrane. In: Murphy, A., Schulz, B., Peer, W. (eds) The Plant Plasma Membrane. Plant Cell Monographs, vol 19. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13431-9_20

Download citation

Publish with us

Policies and ethics