Skip to main content

Biology of Plant Potassium Channels

  • Chapter
  • First Online:
The Plant Plasma Membrane

Part of the book series: Plant Cell Monographs ((CELLMONO,volume 19))

Abstract

Potassium channels are found in all living organism from bacteria to men, and even in viruses. They were among the first transport proteins to be discovered on the molecular level. Pioneering work on potassium channel structure and function has led to the most comprehensive understanding about the physiology and regulation of potassium transport on cellular and organism levels. Since their discovery in 1984 by the first patch clamp in plants and the identification of genes encoding them in the early 1990s, potassium channels have advanced to the best understood transport proteins in plants. Starting with a brief introduction into the history of plant potassium transport, this review focuses on the molecular physiology of paradigmatic members of the “green” potassium channel family gained from studies in plants with sequenced genomes (the so-called model plants). We will then provide insights into our current knowledge of how channels find the membrane they control. Finally, the reader – in a plant signaling network context – will be introduced which triggers address the channel and how it responds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ache P, Becker D, Ivashikina N, Dietrich P, Roelfsema MR, Hedrich R (2000) GORK, a delayed outward rectifier expressed in guard cells of Arabidopsis thaliana, is a K(+)-selective, K(+)-sensing ion channel. FEBS Lett 486:93–98

    PubMed  CAS  Google Scholar 

  • Ache P, Becker D, Deeken R, Dreyer I, Weber H, Fromm J, Hedrich R (2001) VFK1, a Vicia faba K+ channel involved in phloem unloading. Plant J 27:571–580

    PubMed  CAS  Google Scholar 

  • Allen GJ, Sanders D (1996) Control of ionic currents in guard cell vacuoles by cytosolic and luminal calcium. Plant J 10:1055–1069

    PubMed  CAS  Google Scholar 

  • Anderson JA, Huprikar SS, Kochian LV, Lucas WJ, Gaber RF (1992) Functional expression of a probable Arabidopsis thaliana potassium channel in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 89:3736–3740

    PubMed  CAS  Google Scholar 

  • Assmann SM, Wang XQ (2001) From milliseconds to millions of years: guard cells and environmental responses. Curr Opin Plant Biol 4:421–428

    PubMed  CAS  Google Scholar 

  • Becker D, Hedrich R (2002) Channelling auxin action: modulation of ion transport by indole-3-acetic acid. Plant Mol Biol 49:349–356

    PubMed  CAS  Google Scholar 

  • Becker D, Dreyer I, Hoth S, Reid JD, Busch H, Lehnen M, Palme K, Hedrich R (1996) Changes in voltage activation, Cs+ sensitivity, and ion permeability in H5 mutants of the plant K+ channel KAT1. Proc Natl Acad Sci USA 93:8123–8128

    PubMed  CAS  Google Scholar 

  • Becker D, Hoth S, Ache P, Wenkel S, Roelfsema MR, Meyerhoff O, Hartung W, Hedrich R (2003) Regulation of the ABA-sensitive Arabidopsis potassium channel gene GORK in response to water stress. FEBS Lett 554:119–126

    PubMed  CAS  Google Scholar 

  • Becker D, Geiger D, Dunkel M, Roller A, Bertl A, Latz A, Carpaneto A, Dietrich P, Roelfsema MR, Voelker C, Schmidt D, Mueller-Roeber B, Czempinski K, Hedrich R (2004) AtTPK4, an Arabidopsis tandem-pore K+ channel, poised to control the pollen membrane voltage in a pH- and Ca2+-dependent manner. Proc Natl Acad Sci USA 101:15621–15626

    PubMed  CAS  Google Scholar 

  • Bertl A, Reid JD, Sentenac H, Slayman CL (1997) Functional comparison of plant inward-rectifier channels expressed in yeast. J Exp Bot 48:405–413

    Google Scholar 

  • Bertl A, Bihler H, Kettner C, Slayman CL (1998) Electrophysiology in the eukaryotic model cell Saccharomyces cerevisiae. Pflugers Arch 436:999–1013

    PubMed  CAS  Google Scholar 

  • Bihler H, Eing C, Hebeisen S, Roller A, Czempinski K, Bertl A (2005) TPK1 is a vacuolar ion channel different from the slow-vacuolar cation channel. Plant Physiol 139:417–424

    PubMed  CAS  Google Scholar 

  • Brüggemann L, Dietrich P, Becker D, Dreyer I, Palme K, Hedrich R (1999) Channel-mediated high-affinity K+ uptake into guard cells from Arabidopsis. Proc Natl Acad Sci USA 96:3298–3302

    PubMed  Google Scholar 

  • Chen YF, Wang Y, Wu WH (2008) Membrane transporters for nitrogen, phosphate and potassium uptake in plants. J Integr Plant Biol 50:835–848

    PubMed  CAS  Google Scholar 

  • Czempinski K, Frachisse JM, Maurel C, Barbier-Brygoo H, Mueller-Roeber B (2002) Vacuolar membrane localization of the Arabidopsis ‘two-pore’ K+ channel KCO1. Plant J 29:809–820

    PubMed  CAS  Google Scholar 

  • Daram P, Urbach S, Gaymard F, Sentenac H, Cherel I (1997) Tetramerization of the AKT1 plant potassium channel involves its C-terminal cytoplasmic domain. EMBO J 16:3455–3463

    PubMed  CAS  Google Scholar 

  • Deeken R, Geiger D, Fromm J, Koroleva O, Ache P, Langenfeld-Heyser R, Sauer N, May ST, Hedrich R (2002) Loss of the AKT2/3 potassium channel affects sugar loading into the phloem of Arabidopsis. Planta 216:334–344

    PubMed  CAS  Google Scholar 

  • Dennison KL, Robertson WR, Lewis BD, Hirsch RE, Sussman MR, Spalding EP (2001) Functions of AKT1 and AKT2 potassium channels determined by studies of single and double mutants of Arabidopsis. Plant Physiol 127:1012–1019

    PubMed  CAS  Google Scholar 

  • Desbrosses G, Josefsson C, Rigas S, Hatzopoulos P, Dolan L (2003) AKT1 and TRH1 are required during root hair elongation in Arabidopsis. J Exp Bot 54:781–788

    PubMed  CAS  Google Scholar 

  • Dietrich P, Sanders D, Hedrich R (2001) The role of ion channels in light-dependent stomatal opening. J Exp Bot 52:1959–1967

    PubMed  CAS  Google Scholar 

  • Doyle DA, Morais Cabral J, Pfuetzner RA, Kuo A, Gulbis JM, Cohen SL, Chait BT, MacKinnon R (1998) The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280:69–77

    PubMed  CAS  Google Scholar 

  • Dreyer I, Blatt MR (2009) What makes a gate? The ins and outs of Kv-like K+ channels in plants. Trends Plant Sci 14:383–390

    PubMed  CAS  Google Scholar 

  • Dreyer I, Poree F, Schneider A, Mittelstadt J, Bertl A, Sentenac H, Thibaud JB, Mueller-Roeber B (2004) Assembly of plant Shaker-like K(out) channels requires two distinct sites of the channel alpha-subunit. Biophys J 87:858–872

    PubMed  CAS  Google Scholar 

  • Duby G, Hosy E, Fizames C, Alcon C, Costa A, Sentenac H, Thibaud JB (2008) AtKC1, a conditionally targeted Shaker-type subunit, regulates the activity of plant K+ channels. Plant J 53:115–123

    PubMed  CAS  Google Scholar 

  • Dunkel M, Latz A, Schumacher K, Müller T, Becker D, Hedrich R (2008) Targeting of vacuolar membrane localized members of the TPK channel family. Mol Plant 1(6):938–949

    PubMed  CAS  Google Scholar 

  • Epstein E (1964) Kinetic evidence for complex between potassium and binding sites of carriers. Plant Physiol 39:R39

    Google Scholar 

  • Epstein E, Elzam OE, Rains DW (1963) Resolution of dual mechanisms of potassium absorption by barley roots. Proc Natl Acad Sci USA 49:684–692

    PubMed  CAS  Google Scholar 

  • Fuchs I, Philippar K, Hedrich R (2006) Ion channels meet auxin action. Plant Biol (Stuttg) 8:353–359

    CAS  Google Scholar 

  • Gajdanowicz P, Garcia-Mata C, Gonzalez W, Morales-Navarro SE, Sharma T, Gonzalez-Nilo FD, Gutowicz J, Mueller-Roeber B, Blatt MR, Dreyer I (2009) Distinct roles of the last transmembrane domain in controlling Arabidopsis K+ channel activity. New Phytol 182:380–391

    PubMed  CAS  Google Scholar 

  • Gaymard F, Pilot G, Lacombe B, Bouchez D, Bruneau D, Boucherez J, Michaux-Ferrière N, Thibaud J-B, Sentenac H (1998) Identification and disruption of a plant shaker-like outward channel involved in K+ release into the xylem sap. Cell 94:647–655

    PubMed  CAS  Google Scholar 

  • Geiger D, Becker D, Lacombe B, Hedrich R (2002) Outer pore residues control the H+ and K+ sensitivity of the Arabidopsis potassium channel AKT3. Plant Cell 14:1859–1868

    PubMed  CAS  Google Scholar 

  • Geiger D, Becker D, Vosloh D, Gambale F, Palme K, Rehers M, Anschuetz U, Dreyer I, Kudla J, Hedrich R (2009) Heteromeric AtKC1/AKT1 channels in Arabidopsis roots facilitate growth under K+-limiting conditions. J Biol Chem 284:21288–21295

    PubMed  CAS  Google Scholar 

  • Gierth M, Maser P, Schroeder JI (2005) The potassium transporter AtHAK5 functions in K(+) deprivation-induced high-affinity K(+) uptake and AKT1 K(+) channel contribution to K(+) uptake kinetics in Arabidopsis roots. Plant Physiol 137:1105–1114

    PubMed  CAS  Google Scholar 

  • Gobert A, Isayenkov S, Voelker C, Czempinski K, Maathuis FJM (2007) The two-pore channel TPK1 gene encodes the vacuolar K+ conductance and plays a role in K+ homeostasis. Proc Natl Acad Sci USA 104:10726–10731

    PubMed  CAS  Google Scholar 

  • Hedrich R, Becker D (1994) Green circuits – the potential of plant specific ion channels. Plant Mol Biol 26:1637–1650

    PubMed  CAS  Google Scholar 

  • Hedrich R, Kudla J (2006) Calcium signaling networks channel plant K+ uptake. Cell 125:1221–1223

    PubMed  CAS  Google Scholar 

  • Hedrich R, Marten I (2006) 30-year progress of membrane transport in plants. Planta 224:725–739

    PubMed  CAS  Google Scholar 

  • Hedrich R, Neher E (1987) Cytoplasmic calcium regulates voltage-dependent ion channels in plant vacuoles. Nature 329:833–836

    Google Scholar 

  • Hedrich R, Schroeder JI (1989) The physiology of ion channels and electrogenic pumps in higher-plants. Annu Rev Plant Phys Plant Mol Biol 40:539–569

    Google Scholar 

  • Hedrich R, Schroeder JI, Fernandez JM (1987) Patch-clamp studies on higher-plant cells – a perspective. Trends Biochem Sci 12:49–52

    CAS  Google Scholar 

  • Hirsch RE, Lewis BD, Spalding EP, Sussman MR (1998) A role for the AKT1 potassium channel in plant nutrition. Science 280:918–921

    PubMed  CAS  Google Scholar 

  • Holt ME, Volk NJ (1945) Sodium as a plant nutrient and substitute for potassium. J Am Soc Agron 37:821–827

    CAS  Google Scholar 

  • Hosy E, Vavasseur A, Mouline K, Dreyer I, Gaymard F, Poree F, Boucherez J, Lebaudy A, Bouchez D, Very AA, Simonneau T, Thibaud JB, Sentenac H (2003) The Arabidopsis outward K+ channel GORK is involved in regulation of stomatal movements and plant transpiration. Proc Natl Acad Sci USA 100:5549–5554

    PubMed  CAS  Google Scholar 

  • Hoth S, Dreyer I, Dietrich P, Becker D, Muller-Rober B, Hedrich R (1997) Molecular basis of plant-specific acid activation of K+ uptake channels. Proc Natl Acad Sci USA 94:4806–4810

    PubMed  CAS  Google Scholar 

  • Hoth S, Geiger D, Becker D, Hedrich R (2001) The pore of plant K(+) channels is involved in voltage and pH sensing: domain-swapping between different K(+) channel alpha-subunits. Plant Cell 13:943–952

    PubMed  CAS  Google Scholar 

  • Hurst AC, Meckel T, Tayefeh S, Thiel G, Homann U (2004) Trafficking of the plant potassium inward rectifier KAT1 in guard cell protoplasts of Vicia faba. Plant J 37:391–397

    PubMed  CAS  Google Scholar 

  • Iijima T, Hagiwara S (1987) Voltage-dependent K channels in protoplasts of trap-lobe cells of Dionaea muscipula. J Membr Biol 100:73–81

    PubMed  CAS  Google Scholar 

  • Ivashikina N, Hedrich R (2005) K+ currents through SV-type vacuolar channels are sensitive to elevated luminal sodium levels. Plant J 41:606–614

    PubMed  CAS  Google Scholar 

  • Ivashikina N, Becker D, Ache P, Meyerhoff O, Felle HH, Hedrich R (2001) K(+) channel profile and electrical properties of Arabidopsis root hairs. FEBS Lett 508:463–469

    PubMed  CAS  Google Scholar 

  • Ivashikina N, Deeken R, Fischer S, Ache P, Hedrich R (2005) AKT2/3 subunits render guard cell K+ channels Ca2+ sensitive. J Gen Physiol 125:483–492

    PubMed  CAS  Google Scholar 

  • Jan LY, Jan YN (1997) Cloned potassium channels from eukaryotes and prokaryotes. Annu Rev Neurosci 20:91–123

    PubMed  CAS  Google Scholar 

  • Jiang Y, Lee A, Chen J, Ruta V, Cadene M, Chait BT, MacKinnon R (2003) X-ray structure of a voltage-dependent K+ channel. Nature 423:33–41

    PubMed  CAS  Google Scholar 

  • Johansson I, Wulfetange K, Poree F, Michard E, Gajdanowicz P, Lacombe B, Sentenac H, Thibaud JB, Mueller-Roeber B, Blatt MR, Dreyer I (2006) External K+ modulates the activity of the Arabidopsis potassium channel SKOR via an unusual mechanism. Plant J 46:269–281

    PubMed  CAS  Google Scholar 

  • Kuo A, Gulbis JM, Antcliff JF, Rahman T, Lowe ED, Zimmer J, Cuthbertson J, Ashcroft FM, Ezaki T, Doyle DA (2003) Crystal structure of the potassium channel KirBac1.1 in the closed state. Science 300:1922–1926

    PubMed  CAS  Google Scholar 

  • Kwak JM, Murata Y, Baizabal-Aguirre VM, Merrill J, Wang M, Kemper A, Hawke SD, Tallman G, Schroeder JI (2001) Dominant negative guard cell K+ channel mutants reduce inward-rectifying K+ currents and light-induced stomatal opening in arabidopsis. Plant Physiol 127:473–485

    PubMed  CAS  Google Scholar 

  • Lacombe B, Pilot G, Michard E, Gaymard F, Sentenac H, Thibaud JB (2000) A shaker-like K(+) channel with weak rectification is expressed in both source and sink phloem tissues of Arabidopsis. Plant Cell 12:837–851

    PubMed  CAS  Google Scholar 

  • Lai HC, Grabe M, Jan YN, Jan LY (2005) The S4 voltage sensor packs against the pore domain in the KAT1 voltage-gated potassium channel. Neuron 47:395–406

    PubMed  CAS  Google Scholar 

  • Latorre R, Munoz F, Gonzalez C, Cosmelli D (2003) Structure and function of potassium channels in plants: some inferences about the molecular origin of inward rectification in KAT1 channels (Review). Mol Membr Biol 20:19–25

    PubMed  CAS  Google Scholar 

  • Latz A, Becker D, Hekman M, Muller T, Beyhl D, Marten I, Eing C, Fischer A, Dunkel M, Bertl A, Rapp UR, Hedrich R (2007a) TPK1, a Ca(2+)-regulated Arabidopsis vacuole two-pore K(+) channel is activated by 14-3-3 proteins. Plant J 52:449–459

    PubMed  CAS  Google Scholar 

  • Latz A, Ivashikina N, Fischer S, Ache P, Sano T, Becker D, Deeken R, Hedrich R (2007b) In planta AKT2 subunits constitute a pH- and Ca2+-sensitive inward rectifying K+ channel. Planta 225:1179–1191

    PubMed  CAS  Google Scholar 

  • Lebaudy A, Very AA, Sentenac H (2007) K+ channel activity in plants: genes, regulations and functions. FEBS Lett 581:2357–2366

    PubMed  CAS  Google Scholar 

  • Lebaudy A, Vavasseur A, Hosy E, Dreyer I, Leonhardt N, Thibaud JB, Very AA, Simonneau T, Sentenac H (2008) Plant adaptation to fluctuating environment and biomass production are strongly dependent on guard cell potassium channels. Proc Natl Acad Sci USA 105:5271–5276

    PubMed  CAS  Google Scholar 

  • Lee SC, Lan WZ, Kim BG, Li L, Cheong YH, Pandey GK, Lu G, Buchanan BB, Luan S (2007) A protein phosphorylation/dephosphorylation network regulates a plant potassium channel. Proc Natl Acad Sci USA 104:15959–15964

    PubMed  CAS  Google Scholar 

  • Li L, Kim BG, Cheong YH, Pandey GK, Luan S (2006) A Ca(2)+ signaling pathway regulates a K(+) channel for low-K response in Arabidopsis. Proc Natl Acad Sci USA 103:12625–12630

    PubMed  CAS  Google Scholar 

  • Li L, Liu K, Hu Y, Li D, Luan S (2008) Single mutations convert an outward K+ channel into an inward K+ channel. Proc Natl Acad Sci USA 105:2871–2876

    PubMed  CAS  Google Scholar 

  • Long SB, Campbell EB, Mackinnon R (2005) Crystal structure of a mammalian voltage-dependent Shaker family K+ channel. Science 309:897–903

    PubMed  CAS  Google Scholar 

  • Long SB, Tao X, Campbell EB, MacKinnon R (2007) Atomic structure of a voltage-dependent K+ channel in a lipid membrane-like environment. Nature 450:376–382

    PubMed  CAS  Google Scholar 

  • MacKinnon R (2003) Potassium channels. FEBS Lett 555:62–65

    PubMed  CAS  Google Scholar 

  • MacRobbie EA (1998) Signal transduction and ion channels in guard cells. Phil Trans R Soc Lond B Biol Sci 353:1475–1488

    CAS  Google Scholar 

  • MacRobbie EA, Kurup S (2007) Signalling mechanisms in the regulation of vacuolar ion release in guard cells. New Phytol 175:630–640

    PubMed  CAS  Google Scholar 

  • Marten I, Hoshi T (1998) The N-terminus of the K channel KAT1 controls its voltage-dependent gating by altering the membrane electric field. Biophys J 74:2953–2962

    PubMed  CAS  Google Scholar 

  • Meckel T, Hurst AC, Thiel G, Homann U (2005) Guard cells undergo constitutive and pressure-driven membrane turnover. Protoplasma 226:23–29

    PubMed  CAS  Google Scholar 

  • Meckel T, Gall L, Semrau S, Homann U, Thiel G (2007) Guard cells elongate: relationship of volume and surface area during stomatal movement. Biophys J 92:1072–1080

    PubMed  CAS  Google Scholar 

  • Michard E, Lacombe B, Poree F, Mueller-Roeber B, Sentenac H, Thibaud JB, Dreyer I (2005) A unique voltage sensor sensitizes the potassium channel AKT2 to phosphoregulation. J Gen Physiol 126:605–617

    PubMed  CAS  Google Scholar 

  • Moran N, Ehrenstein G, Iwasa K, Mischke C, Bare C, Satter RL (1988) Potassium channels in motor cells of Samanea saman: A Patch-Clamp Study. Plant Physiol 88:643–648

    PubMed  CAS  Google Scholar 

  • Mouline K, Véry AA, Fdr G, Boucherez J, Pilot G, Devic M, Bouchez D, Thibaud JB, Sentenac H (2002) Pollen tube development and competitive ability are impaired by disruption of a Shaker K+ channel in Arabidopsis. Genes Dev 16:339–350

    PubMed  CAS  Google Scholar 

  • Müller-Rober B, Ellenberg J, Provart N, Willmitzer L, Busch H, Becker D, Dietrich P, Hoth S, Hedrich R (1995) Cloning and electrophysiological analysis of KST1, an inward rectifying K+ channel expressed in potato guard cells. EMBO J 14:2409–2416

    PubMed  Google Scholar 

  • Nagata T, Matsuoka K, Inze D (2006) Tobacco BY-2 Cells: from cellular dynamics to omics. In: Nagata T, Lörz H, Widholm JM (eds) Biotechnology in agriculture and forestry. Springer, Berlin

    Google Scholar 

  • Nakamura RL, McKendree WL Jr, Hirsch RE, Sedbrook JC, Gaber RF, Sussman MR (1995) Expression of an Arabidopsis potassium channel gene in guard cells. Plant Physiol 109:371–374

    PubMed  CAS  Google Scholar 

  • Naso A, Dreyer I, Pedemonte L, Testa I, Gomez-Porras JL, Usai C, Mueller-Rueber B, Diaspro A, Gambale F, Picco C (2009) The role of the C-terminus for functional heteromerization of the plant channel KDC1. Biophys J 96:4063–4074

    PubMed  CAS  Google Scholar 

  • Obrdlik P, El-Bakkoury M, Hamacher T, Cappellaro C, Vilarino C, Fleischer C, Ellerbrok H, Kamuzinzi R, Ledent V, Blaudez D, Sanders D, Revuelta JL, Boles E, Andre B, Frommer WB (2004) K+ channel interactions detected by a genetic system optimized for systematic studies of membrane protein interactions. Proc Natl Acad Sci USA 101:12242–12247

    PubMed  CAS  Google Scholar 

  • Okamura Y (2007) Biodiversity of voltage sensor domain proteins. Pflügers Arch 454:361–371

    PubMed  CAS  Google Scholar 

  • Peiter E, Maathuis FJ, Mills LN, Knight H, Pelloux J, Hetherington AM, Sanders D (2005) The vacuolar Ca2+-activated channel TPC1 regulates germination and stomatal movement. Nature 434:404–408

    PubMed  CAS  Google Scholar 

  • Philippar K, Fuchs I, Luthen H, Hoth S, Bauer CS, Haga K, Thiel G, Ljung K, Sandberg G, Bottger M, Becker D, Hedrich R (1999) Auxin-induced K+ channel expression represents an essential step in coleoptile growth and gravitropism. Proc Natl Acad Sci USA 96:12186–12191

    PubMed  CAS  Google Scholar 

  • Philippar K, Buchsenschutz K, Abshagen M, Fuchs I, Geiger D, Lacombe B, Hedrich R (2003) The K+ channel KZM1 mediates potassium uptake into the phloem and guard cells of the C4 grass Zea mays. J Biol Chem 278:16973–16981

    PubMed  CAS  Google Scholar 

  • Philippar K, Ivashikina N, Ache P, Christian M, Luthen H, Palme K, Hedrich R (2004) Auxin activates KAT1 and KAT2, two K+-channel genes expressed in seedlings of Arabidopsis thaliana. Plant J 37:815–827

    PubMed  CAS  Google Scholar 

  • Poree F, Wulfetange K, Naso A, Carpaneto A, Roller A, Natura G, Bertl A, Sentenac H, Thibaud JB, Dreyer I (2005) Plant Kin and Kout channels: approaching the trait of opposite rectification by analyzing more than 250 KAT1-SKOR chimeras. Biochem Biophys Res Commun 332:465–473

    PubMed  CAS  Google Scholar 

  • Pottosin I, Wherrett T, Shabala S (2009) SV channels dominate the vacuolar Ca2+ release during intracellular signaling. FEBS Lett 583:921–926

    PubMed  CAS  Google Scholar 

  • Ranf S, Wunnenberg P, Lee J, Becker D, Dunkel M, Hedrich R, Scheel D, Dietrich P (2008) Loss of the vacuolar cation channel, AtTPC1, does not impair Ca2+ signals induced by abiotic and biotic stresses. Plant J 53:287–299

    PubMed  CAS  Google Scholar 

  • Reintanz B, Szyroki A, Ivashikina N, Ache P, Godde M, Becker D, Palme K, Hedrich R (2002) AtKC1, a silent Arabidopsis potassium channel alpha-subunit modulates root hair K+ influx. Proc Natl Acad Sci USA 99:4079–4084

    PubMed  CAS  Google Scholar 

  • Roelfsema MR, Hedrich R (2005) In the light of stomatal opening: new insights into ‘the Watergate’. New Phytol 167:665–691

    PubMed  CAS  Google Scholar 

  • Rubio F, Nieves-Cordones M, Aleman F, Martinez V (2008) Relative contribution of AtHAK5 and AtAKT1 to K+ uptake in the high-affinity range of concentrations. Physiol Plant 134:598–608

    PubMed  CAS  Google Scholar 

  • Sano T, Becker D, Ivashikina N, Wegner LH, Zimmermann U, Roelfsema MR, Nagata T, Hedrich R (2007) Plant cells must pass a K+ threshold to re-enter the cell cycle. Plant J 50:401–413

    PubMed  CAS  Google Scholar 

  • Sano T, Kutsuna N, Becker D, Hedrich R, Hasezawa S (2009) Outward-rectifying K+ channel activities regulate cell elongation and cell division of tobacco BY-2 cells. Plant J 57:55–64

    PubMed  CAS  Google Scholar 

  • Sato A, Sato Y, Fukao Y, Fujiwara M, Umezawa T, Shinozaki K, Hibi T, Taniguchi M, Miyake H, Goto DB, Uozumi N (2009) Threonine at position 306 of the KAT1 potassium channel is essential for channel activity and is a target site for ABA-activated SnRK2/OST1/SnRK2.6 protein kinase. Biochem J 424:439–448

    PubMed  CAS  Google Scholar 

  • Satter RL, Moran N (1988) Ionic channels in plant-cell membranes. Physiol Plant 72:816–820

    CAS  Google Scholar 

  • Schachtman DP, Schroeder JI, Lucas WJ, Anderson JA, Gaber RF (1992) Expression of an inward-rectifying potassium channel by the Arabidopsis KAT1 cDNA. Science 258:1654–1658

    PubMed  CAS  Google Scholar 

  • Schroeder JI, Hedrich R (1989) Involvement of ion channels and active transport in osmoregulation and signaling of higher plant cells. Trends Biochem Sci 14:187–192

    PubMed  CAS  Google Scholar 

  • Schroeder JI, Hedrich R, Fernandez JM (1984) Potassium-selective single channels in guard-cell protoplasts of Vicia faba. Nature 312:361–362

    CAS  Google Scholar 

  • Schroeder JI, Allen GJ, Hugouvieux V, Kwak JM, Waner D (2001) Guard cell signal transduction. Annu Rev Plant Physiol Plant Mol Biol 52:627–658

    PubMed  CAS  Google Scholar 

  • Schulz-Lessdorf B, Dietrich P, Marten I, Lohse G, Busch H, Hedrich R (1994) Coordination of plasma membrane and vacuolar membrane ion channels during stomatal movement. Symp Soc Exp Biol 48:99–112

    PubMed  CAS  Google Scholar 

  • Sentenac H, Bonneaud N, Minet M, Lacroute F, Salmon JM, Gaymard F, Grignon C (1992) Cloning and expression in yeast of a plant potassium-ion transport-system. Science 256:663–665

    PubMed  CAS  Google Scholar 

  • Sottocornola B, Visconti S, Orsi S, Gazzarrini S, Giacometti S, Olivari C, Camoni L, Aducci P, Marra M, Abenavoli A, Thiel G, Moroni A (2006) The potassium channel KAT1 is activated by plant and animal 14-3-3 proteins. J Biol Chem 281:35735–35741

    PubMed  CAS  Google Scholar 

  • Sottocornola B, Gazzarrini S, Olivari C, Romani G, Valbuzzi P, Thiel G, Moroni A (2008) 14-3-3 proteins regulate the potassium channel KAT1 by dual modes. Plant Biol 10:231–236

    PubMed  CAS  Google Scholar 

  • Spalding EP, Hirsch RE, Lewis DR, Qi Z, Sussman MR, Lewis BD (1999) Potassium uptake supporting plant growth in the absence of AKT1 channel activity: Inhibition by ammonium and stimulation by sodium. J Gen Physiol 113:909–918

    PubMed  CAS  Google Scholar 

  • Sutter JU, Sieben C, Hartel A, Eisenach C, Thiel G, Blatt MR (2007) Abscisic acid triggers the endocytosis of the arabidopsis KAT1 K+ channel and its recycling to the plasma membrane. Curr Biol 17:1396–1402

    PubMed  CAS  Google Scholar 

  • Szczerba MW, Britto DT, Kronzucker HJ (2009) K+ transport in plants: physiology and molecular biology. J Plant Physiol 166:447–466

    PubMed  CAS  Google Scholar 

  • Szyroki A, Ivashikina N, Dietrich P, Roelfsema MR, Ache P, Reintanz B, Deeken R, Godde M, Felle H, Steinmeyer R, Palme K, Hedrich R (2001) KAT1 is not essential for stomatal opening. Proc Natl Acad Sci USA 98:2917–2921

    PubMed  CAS  Google Scholar 

  • Tang XD, Marten I, Dietrich P, Ivashikina N, Hedrich R, Hoshi T (2000) Histidine(118) in the S2-S3 linker specifically controls activation of the KAT1 channel expressed in Xenopus oocytes. Biophys J 78:1255–1269

    PubMed  CAS  Google Scholar 

  • van den Wijngaard PW, Bunney TD, Roobeek I, Schonknecht G, de Boer AH (2001) Slow vacuolar channels from barley mesophyll cells are regulated by 14-3-3 proteins. FEBS Lett 488:100–104

    PubMed  Google Scholar 

  • Very AA, Sentenac H (2002) Cation channels in the Arabidopsis plasma membrane. Trends Plant Sci 7:168–175

    PubMed  CAS  Google Scholar 

  • Voelker C, Schmidt D, Mueller-Roeber B, Czempinski K (2006) Members of the Arabidopsis AtTPK/KCO family form homomeric vacuolar channels in planta. Plant J 48:296–306

    PubMed  CAS  Google Scholar 

  • Walker DJ, Leigh RA, Miller AJ (1996) Potassium homeostasis in vacuolate plant cells. Proc Natl Acad Sci USA 93:10510–10514

    PubMed  CAS  Google Scholar 

  • Ward JM, Schroeder JI (1994) Calcium-activated K+ channels and calcium-induced calcium release by slow vacuolar ion channels in guard cell vacuoles implicated in the control of stomatal closure. Plant Cell 6:669–683

    PubMed  CAS  Google Scholar 

  • Ward JM, Mäser P, Schroeder JI (2009) Plant ion channels: gene families, physiology, and functional genomics analyses. Annu Rev Physiol 71:59–82

    PubMed  CAS  Google Scholar 

  • Xu J, Li HD, Chen LQ, Wang Y, Liu LL, He L, Wu WH (2006) A protein kinase, interacting with two calcineurin B-like proteins, regulates K+ transporter AKT1 in Arabidopsis. Cell 125:1347–1360

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hedrich, R., Anschütz, U., Becker, D. (2011). Biology of Plant Potassium Channels. In: Murphy, A., Schulz, B., Peer, W. (eds) The Plant Plasma Membrane. Plant Cell Monographs, vol 19. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13431-9_11

Download citation

Publish with us

Policies and ethics