Skip to main content

Lipids of the Plant Plasma Membrane

  • Chapter
  • First Online:
Book cover The Plant Plasma Membrane

Part of the book series: Plant Cell Monographs ((CELLMONO,volume 19))

Abstract

The plasma membrane (PM) is arguably the most diverse membrane of the plant cell. Furthermore, the protein and lipid composition of the PM varies with cell type, developmental stage, and environment. Physical properties of lipids and associate proteins allow the formation of a barrier that is selectively permeable to macromolecules and solutes. As the plasma membrane delineates the interface between the cell and the environment, it is the primary part of signal recognition and transduction into intracellular responses for nutritional uptake/distribution, environmental responses, and developmental signaling. Many essential PM functions are carried out by proteinaceous components. However, PM lipids play a crucial role in determining cell structures regulating membrane fluidity and transducing signals. The composition and physical state of the lipid bilayer influence lipid–protein and protein–protein associations, membrane-bound enzyme activities, and transport capacity of membranes. Analyses of membrane function require highly selective and efficient purification methods. In this chapter, we first briefly review the methods to isolate PM from plant tissue and describe the lipid content of purified membranes. We further examine the involvement of different lipid species on signaling events that allow the plant cell to cope with environmental fluctuations. Finally, we discuss how regulated segregation of lipids inside the PM is of crucial importance to understand signaling mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andersson MX, Larsson KE, Tjellström H, Liljenberg C, Sandelius AS (2005) Phosphate-limited oat. The plasma membrane and the tonoplast as major targets for phospholipid-to-glycolipid replacement and stimulation of phospholipases in the plasma membrane. J Biol Chem 280:27578–27586

    Article  PubMed  CAS  Google Scholar 

  • Beck JG, Mathieu D, Loudet C, Buchoux S, Dufourc EJ (2007) Plant sterols in “rafts”: a better way to regulate membrane thermal shocks. FASEB J 21:1714–1723

    Article  PubMed  CAS  Google Scholar 

  • Bessoule JJ, Moreau P (2004) Phospholipid synthesis and dynamics in plant cells. In: Daum G (ed) Lipid metabolism and membrane biogenesis. Topics in current genetics, vol 6. Springer, Berlin, pp 89–124

    Chapter  Google Scholar 

  • Bhat RA, Panstruga R (2005) Lipid rafts in plants. Planta 223:5–19

    Article  PubMed  CAS  Google Scholar 

  • Bohn M, Lüthje S, Sperling P, Heinz E, Dörffling K (2007) Plasma membrane lipid alterations induced by cold acclimation and abscisic acid treatment of winter wheat seedlings differing in frost resistance. J Plant Physiol 164:146–156

    Article  PubMed  CAS  Google Scholar 

  • Borner GH, Sherrier DJ, Weimar T, Michaelson LV, Hawkins ND, Macaskill A, Napier JA, Beale MH, Lilley KS, Dupree P (2005) Analysis of detergent-resistant membranes in Arabidopsis. Evidence for plasma membrane lipid rafts. Plant Physiol 137:104–116

    Article  PubMed  CAS  Google Scholar 

  • Brearley CA, Hanke DE (1992) 3- and 4-Phosphorylated phosphatidylinositols in the aquatic plant Spirodela polyrhiza L. Biochem J 283:255–260

    PubMed  CAS  Google Scholar 

  • Brown DJ, Dupont FM (1989) Lipid composition of plasma membranes and endomembranes prepared from roots of barley (Hordeum vulgare L.): effects of salt. Plant Physiol 90:955–961

    Article  PubMed  CAS  Google Scholar 

  • Brown DA, London E (1998) Structure and origin of ordered lipid domains in biological membranes. J Membr Biol 164:103–114

    Article  PubMed  CAS  Google Scholar 

  • Canut H, Bauer J, Weber G (1999) Separation of plant membranes by electromigration techniques. J Chromatogr B Biomed Sci Appl 722:121–139

    Article  PubMed  CAS  Google Scholar 

  • Carter HE, Celmer WD, Galanos DS, Gigg RH, Lands EM, Law JH, Mueller KL, Nakayama T, Tomizawa HH, Weber E (1958) Biochemistry of the sphingolipides. X. Phytoglycolipide, a complex phytosphingosine-containing lipide from plant seeds. J Am Oil Chem Soc 35:335–343

    Article  CAS  Google Scholar 

  • Cho MH, Shears SB, Boss WF (1993) Changes in phosphatidylinositol metabolism in response to hyperosmotic stress in Daucus carota L. cells grown in suspension culture. Plant Physiol 103:637–647

    Article  PubMed  CAS  Google Scholar 

  • Clouse SD (2002) Arabidopsis mutants reveal multiple roles for sterols in plant development. Plant Cell 14:1995–2000

    Article  PubMed  CAS  Google Scholar 

  • Elge S, Brearley C, Xia HJ, Kehr J, Xue HW, Mueller-Roeber B (2001) An Arabidopsis inositol phospholipid kinase strongly expressed in procambial cells: synthesis of PtdIns(4, 5)P2 and PtdIns(3, 4, 5)P3 in insect cells by 5-phosphorylation of precursors. Plant J 26:561–571

    Article  PubMed  CAS  Google Scholar 

  • Fadeel B, Xue D (2009) The ins and outs of phospholipid asymmetry in the plasma membrane: roles in health and disease. Crit Rev Biochem Mol Biol 44:264–277

    Article  PubMed  CAS  Google Scholar 

  • Furt F, König S, Bessoule JJ, Sargueil F, Zallot R, Stanislas T, Noirot E, Lherminier J, Simon-Plas F, Heilmann I, Mongrand S (2010) Polyphosphoinositides are enriched in plant membrane rafts and form microdomain in the plasma membrane. Plant Physiol 152:2173–2187

    Article  PubMed  CAS  Google Scholar 

  • Grandmougin A, Bouvier-Navé P, Ullmann P, Benveniste P, Hartmann MA (1989) Cyclopropyl sterol and phospholipid composition of membrane fractions from maize roots treated with fenpropimorph. Plant Physiol 90:591–597

    Article  PubMed  CAS  Google Scholar 

  • Haque M, Hirai Y, Yokota K, Oguma K (1995) Steryl glycosides: a characteristic feature of the Helicobacter spp.? J Bacteriol 177:5334–5337

    PubMed  CAS  Google Scholar 

  • Hartmann MA, Benveniste P (1987) Plant membrane sterols: isolation, identification and biosynthesis. Meth Enzymol 148:632–650

    Article  CAS  Google Scholar 

  • Hill WG, Rivers RL, Zeidel ML (1999) Role of leaflet asymmetry in the permeability of model biological membranes to protons, solutes, and gases. J Gen Physiol 114:405–414

    Article  PubMed  CAS  Google Scholar 

  • Irvine RF, Letcher AJ, Lander DJ, Drobak BK, Dawson AP, Musgrave A (1989) Phosphatidylinositol(4, 5)bisphosphate and phosphatidylinositol(4)phosphate in plant tissues. Plant Physiol 89:888–892

    Article  PubMed  CAS  Google Scholar 

  • Jacobson K, Mouritsen OG, Anderson RG (2007) Lipid rafts: at a crossroad between cell biology and physics. Nat Cell Biol 9:7–14

    Article  PubMed  CAS  Google Scholar 

  • Jones MA, Raymond MJ, Smirnoff N (2006) Analysis of the root-hair morphogenesis transcriptome reveals the molecular identity of six genes with roles in root-hair development in Arabidopsis. Plant J 45:83–100

    Article  PubMed  CAS  Google Scholar 

  • Jung JY, Kim YW, Kwak JM, Hwang JU, Young J, Schroeder JI, Hwang I, Lee Y (2002) Phosphatidylinositol 3- and 4-phosphate are required for normal stomatal movements. Plant Cell 14:2399–2412

    Article  PubMed  CAS  Google Scholar 

  • Kierszniowska S, Seiwert B, Schulze WX (2008) Definition of Arabidopsis sterol-rich membrane microdomains by differential treatment with methyl-β-cyclodextrin and quantitative proteomics. Mol Cell Proteomics [Epub ahead of print]

    Google Scholar 

  • König S, Mosblech A, Heilmann I (2007) Stress-inducible and constitutive polyphosphoinositide pools have distinctive fatty acid patterns in Arabidopsis thaliana. FASEB J 21:1958–1967

    Article  PubMed  Google Scholar 

  • Kurzchalia TV, Parton RG (1999) Membrane microdomains and caveolae. Curr Opin Cell Biol 11:424–431

    Article  PubMed  CAS  Google Scholar 

  • Laloi M, Perret AM, Chatre L, Melser S, Cantrel C, Vaultier MN, Zachowski A, Bathany K, Schmitter JM, Vallet M, Lessire R, Hartmann MA, Moreau P (2007) Insights into the role of specific lipids in the formation and delivery of lipid microdomains to the plasma membrane of plant cells. Plant Physiol 143:461–472

    Article  PubMed  CAS  Google Scholar 

  • Larsson C, Widell S, Kjellbom P (1987) Preparation of high-purity plasma membranes. Meth Enzymol 148:558–568

    Article  CAS  Google Scholar 

  • Lefebvre B, Furt F, Hartmann MA, Michaelson LV, Carde JP, Sargueil-Boiron F, Rossignol M, Napier JA, Cullimore J, Bessoule JJ, Mongrand S (2007) Characterization of lipid rafts from Medicago truncatula root plasma membranes: a proteomic study reveals the presence of a raft-associated redox system. Plant Physiol 144:402–418

    Article  PubMed  CAS  Google Scholar 

  • Levy A, Erlanger M, Rosenthal M, Epel BL (2007) A plasmodesmata-associated beta-1, 3-glucanase in Arabidopsis. Plant J 49:669–682

    Article  PubMed  CAS  Google Scholar 

  • Lynch DV, Steponkus PL (1987) Plasma membrane lipid alterations associated with cold acclimation of winter rye seedlings (Secale cereale L. cv Puma). Plant Physiol 83(4):761–767

    Article  PubMed  CAS  Google Scholar 

  • Markham JE, Jaworski JG (2007) Rapid measurement of sphingolipids from Arabidopsis thaliana by reversed-phase high-performance liquid chromatography coupled to electrospray ionization tandem mass spectrometry. Rapid Commun Mass Spectrom 21:1304–1314

    Article  PubMed  CAS  Google Scholar 

  • Markham JE, Li J, Cahoon EB, Jaworski JG (2006) Separation and identification of major plant sphingolipid classes from leaves. J Biol Chem 281:22684–22694

    Article  PubMed  CAS  Google Scholar 

  • Meijer HJ, Berrie CP, Iurisci C, Divecha N, Musgrave A, Munnik T (2001) Identification of a new polyphosphoinositide in plants, phosphatidylinositol 5-monophosphate (PtdIns5P), and its accumulation upon osmotic stress. Biochem J 360:491–498

    Article  PubMed  CAS  Google Scholar 

  • Mikami K, Murata N (2003) Membrane fluidity and the perception of environmental signals in cyanobacteria and plants. Prog Lipid Res 42:527–543

    Article  PubMed  CAS  Google Scholar 

  • Mikami K, Katagiri T, Iuchi S, Yamaguchi-Shinozaki K, Shinozaki K (1998) A gene encoding phosphatidylinositol-4-phosphate 5-kinase is induced by water stress and abscisic acid in Arabidopsis thaliana. Plant J 15:563–568

    Article  PubMed  CAS  Google Scholar 

  • Mongrand S, Morel J, Laroche J, Claverol S, Carde JP, Hartmann MA, Bonneu M, Simon-Plas F, Lessire R, Bessoule JJ (2004) Lipid rafts in higher plant cells: purificationand characterization of Triton X-100-insoluble microdomains from tobacco plasma membrane. J Biol Chem 279:36277–36286

    Article  PubMed  CAS  Google Scholar 

  • Morel J, Claverol S, Mongrand S, Furt F, Fromentin J, Bessoule JJ, Blein JP, Simon-Plas F (2006) Proteomics of plant detergent-resistant membranes. Mol Cell Proteomics 5:1396–1411

    Article  PubMed  CAS  Google Scholar 

  • Mueller-Roeber B, Pical C (2002) Inositol phospholipid metabolism in Arabidopsis. Characterized and putative isoforms of inositol phospholipid kinase and polyphosphoinositide-specific phospholipase C. Plant Physiol 130:22–46

    Article  PubMed  CAS  Google Scholar 

  • Munnik T, Van Himbergen JAJ, Ter Riet B, Braun FJ, Irvine RF, Van Den Ende H, Musgrave A (1998) Detailed analysis of the turnover of polyphosphoinositides and phosphatidic acid upon activation of phospholipases C and D in Chlamydomonas cells treated with non-permeabilizing concentrations of mastoparan. Planta 207:133–145

    Article  CAS  Google Scholar 

  • Munnik T, Meijer HJ, Ter Riet B, Hirt H, Frank W, Bartels D, Musgrave A (2000) Hyperosmotic stress stimulates phospholipase D activity and elevates the levels of phosphatidic acid and diacylglycerol pyrophosphate. Plant J 22:147–154

    Article  PubMed  CAS  Google Scholar 

  • Norberg P, Liljenberg C (1991) Lipids of plasma membranes prepared from oat root cells: effects of induced water-deficit tolerance. Plant Physiol 96:1136–1141

    Article  PubMed  CAS  Google Scholar 

  • Palta JP, Whitaker BD, Weiss LS (1993) Plasma membrane lipids associated with genetic variability in freezing tolerance and cold acclimation of Solanum species. Plant Physiol 103:793–803

    PubMed  CAS  Google Scholar 

  • Park KY, Jung JY, Park J, Hwang JU, Kim YW, Hwang I, Lee Y (2003) A role for phosphatidylinositol 3-phosphate in abscisic acid-induced reactive oxygen species generation in guard cells. Plant Physiol 132:92–98

    Article  PubMed  CAS  Google Scholar 

  • Parmar NP, Brearley CA (1993) Identification of 3- and 4-phosphorylated phosphoinositides and inositol phosphates in stomatal guard cells. Plant J 4:255–263

    Article  CAS  Google Scholar 

  • Pata M, Hannun Y, Ng C (2010) Plant sphingolipids: decoding the enigma of the Sphinx. New Phytol 185:611–630

    Article  PubMed  CAS  Google Scholar 

  • Patel KR, Smith PF, Mayberry WR (1978) Comparison of lipids from Spiroplasma citri and corn stunt spiroplasma. J Bacteriol 136:829–831

    PubMed  CAS  Google Scholar 

  • Peng L, Kawagoe Y, Hogan P, Delmer D (2002) Sitosterol-beta-glucoside as primer for cellulose synthesis in plants. Science 295:147–150

    Article  PubMed  CAS  Google Scholar 

  • Perera IY, Davis AJ, Galanopoulou D, Im YJ, Boss WF (2005) Characterization and comparative analysis of Arabidopsis phosphatidylinositol phosphate 5-kinase 10 reveals differences in Arabidopsis and human phosphatidylinositol phosphate kinases. FEBS Lett 579:3427–3432

    Article  PubMed  CAS  Google Scholar 

  • Peskan T, Westermann M, Oelmuller R (2000) Identification of low-density TX100-insoluble plasma membrane microdomains in higher plants. Eur J Biochem 267:6989–6995

    Article  PubMed  CAS  Google Scholar 

  • Pical C, Westergren T, Dove SK, Larsson C, Sommarin M (1999) Salinity and hyperosmotic stress induce rapid increases in phosphatidylinositol 4, 5-bisphosphate, diacylglycerol pyrophosphate, and phosphatidylcholine in Arabidopsis thaliana cells. J Biol Chem 53:38232–38240

    Article  Google Scholar 

  • Pike LJ (2006) Rafts defined: a report on the Keystone symposium on lipid rafts and cell function. J Lipid Res 47:1597–1598

    Article  PubMed  CAS  Google Scholar 

  • Raffaele S, Bayer E, Lafarge D, Cluzet S, German Retana S, Boubekeur T, Leborgne-Castel N, Carde JP, Lherminier J, Noirot E, Satiat-Jeunemaître B, Laroche-Traineau J, Moreau P, Ott T, Maule AJ, Reymond P, Simon-Plas F, Farmer EE, Bessoule JJ, Mongrand S (2009) Remorin, a solanaceae protein resident in membrane rafts and plasmodesmata, impairs potato virus X movement. Plant Cell 21(5):1541–1555

    Article  PubMed  CAS  Google Scholar 

  • Rajendran L, Simons K (2005) Lipid rafts and membrane dynamics. J Cell Sci 118:1099–1102

    Article  PubMed  CAS  Google Scholar 

  • Riethmüller J, Riehle A, Grassmé H, Gulbins E (2006) Membrane rafts in host-pathogen interactions. Biochim Biophys Acta 1758:2139–2147

    Article  PubMed  Google Scholar 

  • Roche Y, Gerbeau-Pissot P, Buhot B, Thomas D, Bonneau L, Gresti J, Mongrand S, Perrier-Cornet JM, Simon-Plas F (2008) Depletion of phytosterols from the plant plasma membrane provides evidence for disruption of lipid rafts. FASEB J 2:3980–3991

    Article  Google Scholar 

  • Ruelland C and D is an early response to a cold exposure in Arabidopsis suspension cells. Plant Physiol. Oct;130(2):999–1007

    Google Scholar 

  • Sandelius A, Sommarin M (1986) Phosphorylation of phosphatidylinositols in isolated plant membranes. FEBS Lett 201:282–286

    Article  CAS  Google Scholar 

  • Sandstrom RP, Cleland RE (1989) Comparison of the lipid composition of oat root and coleoptile plasma membranes: lack of short-term change in response to auxin. Plant Physiol 90:1207–1213

    Article  PubMed  CAS  Google Scholar 

  • Schuck S, Honsho M, Ekroos K, Shevchenko A, Simons K (2003) Resistance of cell membranes to different detergents. Proc Natl Acad Sci USA 100:5795–5800

    Article  PubMed  CAS  Google Scholar 

  • Shahollari B, Peskan-Berghöfer T, Oelmüller R (2004) Receptor kinases with leucine-rich repeats are enriched in Triton X-100 insoluble plasma membrane microdomains from plants. Physiol Plant 122:397–403

    Article  CAS  Google Scholar 

  • Simons K, Ikonen E (1997) Functional rafts in cell membranes. Nature 387:569–572

    Article  PubMed  CAS  Google Scholar 

  • Simons K, Toomre D (2000) Lipid rafts and signal transduction. Nat Rev Mol Cell Biol 1:31–39

    Article  PubMed  CAS  Google Scholar 

  • Simpson C, Thomas C, Findlay K, Bayer E, Maule AJ (2009) An Arabidopsis GPI-anchor plasmodesmal neck protein with callose binding activity and potential to regulate cell-to-cell trafficking. Plant Cell 21:581–594

    Article  PubMed  CAS  Google Scholar 

  • Sperling P, Heinz E (2003) Plant sphingolipids: structural diversity, biosynthesis, first genes and functions. Biochim Biophys Acta 1632:1–15

    Article  PubMed  CAS  Google Scholar 

  • Sperling P, Franke S, Lüthje S, Heinz E (2005) Are glucocerebrosides the predominant sphingolipids in plant plasma membranes? Plant Physiol Biochem 43(12):1031–1038

    Article  PubMed  CAS  Google Scholar 

  • Stanislas T, Bouyssie D, Rossignol M, Vesa S, Fromentin J, Morel J, Pichereaux C, Monsarrat B, Simon-Plas F (2009) Quantitative proteomics reveals a dynamic association of roteins to detergent-resistant membranes upon elicitor signaling in tobacco. Mol Cell Proteomics 8(9):2186–2198

    Article  PubMed  CAS  Google Scholar 

  • Testerink C, Munnik T. (2005) Phosphatidic acid: a multifunctional stress signaling lipid in plants. Trends Plant Sci 10(8):368–375

    Google Scholar 

  • Thomas CL, Bayer EM, Ritzenthaler C, Fernandez-Calvino L, Maule AJ (2008) Specific targeting of a plasmodesmal protein affecting cell-to-cell communication. PLoS Biol 6:e7

    Article  PubMed  Google Scholar 

  • Titapiwatanakun B, Blakeslee JJ, Bandyopadhyay A, Yang H, Mravec J, Sauer M, Cheng Y, Adamec J, Nagashima A, Geisler M, Sakai T, Friml J, Peer WA, Murphy AS (2008) ABCB19/PGP19 stabilises PIN1 in membrane microdomains in Arabidopsis. Plant J 57:27–44

    Article  PubMed  Google Scholar 

  • Tjellstrom H, Andersson MX, Larsson KE, Sandelius AS (2008) Membrane phospholipids as a phosphate reserve: the dynamic nature of phospholipid-to-digalactosyl diacylglycerol exchange in higher plants. Plant Cell Environ 31:1388–1398

    Article  PubMed  Google Scholar 

  • Tjellstrom H, Hellgren LI, Wieslander A, Sandelius AS (2010) Lipid asymmetry in plant plasma membranes: phosphate deficiency-induced phospholipid replacement is restricted to the cytosolic leaflet. FASEB J 24:1128–1138

    Article  PubMed  Google Scholar 

  • Uemura M, Steponkus PL (1994) A contrast of the plasma membrane lipid composition of oat and rye leaves in relation to freezing tolerance. Plant Physiol 104:479–496

    PubMed  CAS  Google Scholar 

  • Uemura M, Joseph RA, Steponkus PL (1995) Cold acclimation of Arabidopsis thaliana (effect on plasma membrane lipid composition and freeze-induced lesions). Plant Physiol 109:15–30

    PubMed  CAS  Google Scholar 

  • van Leeuwen W, Okresz L, Bogre L, Munnik T (2004) Learning the lipid language of plant signalling. Trends Plant Sci 9(8):378–384

    Google Scholar 

  • van deer Luit AH, Piatti T, van Doorn A, Musgrave A, Felix G, Boller T, Munnik T (2000) Elicitation of suspension-cultured tomato cells triggers the formation of phosphatidic acid and diacylglycerol pyrophosphate. Plant Physiol 123(4):1507–1516

    Google Scholar 

  • van Meer G (2005) Cellular lipidomics. EMBO J 24:3159–3165

    Article  PubMed  Google Scholar 

  • van Meer G, Sprong H (2004) Membrane lipids and vesicular traffic. Curr Opin Cell Biol 6:373–378

    Article  Google Scholar 

  • Vermeer JEM, Van Munster EB, Vischer NO, Gadella TWJ (2004) Probing plasma membrane microdomains in cowpea protoplasts using lipidated GFP-fusion proteins and multimode FRET microscopy. J Microsc 214:190–200

    Article  PubMed  CAS  Google Scholar 

  • Vermeer JE, van Leeuwen W, Tobena-Santamaria R, Laxalt AM, Jones DR, Divecha N, Gadella TW Jr, Munnik T (2006) Visualization of PtdIns3P dynamics in living plant cells. Plant J 47:687–700

    Article  PubMed  CAS  Google Scholar 

  • Welters P, Takegawa K, Emr SD, Chrispeels MJ (1994) AtVPS34, a phosphatidylinositol 3-kinase of Arabidopsis thaliana, is an essential protein with homology to a calcium dependent lipid binding domain. Proc Natl Acad Sci USA 91:11398–11402

    Article  PubMed  CAS  Google Scholar 

  • Widell S, Lundborg T, Larsson C (1982) Plasma membranes from oats prepared by partition in an aqueous polymer two-phase system: on the use of light-induced cytochrome b reduction as a marker for the plasma membrane. Plant Physiol 70:1429–1435

    Article  PubMed  CAS  Google Scholar 

  • Wright LC, McMurchie EJ, Pomeroy MK, Raison JK (1982) Thermal behavior and lipid composition of cauliflower plasma membranes in relation to ATPase activity and chilling sensitivity. Plant Physiol 69:1356–1360

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi M, Kasamo K (2001) Modulation in the activity of purified tonoplast H+ -ATPase by tonoplast glycolipids prepared from cultured rice (Oryza sativa L. var. Boro) cells. Plant Cell Physiol 42(5):516–523

    Google Scholar 

  • Yoshida S, Uemura M (1986) Lipid composition of plasma membranes and tonoplasts isolated from etiolated seedlings of mung bean (Vigna radiata L.). Plant Physiol 82:807–812

    Article  PubMed  CAS  Google Scholar 

  • Zalejski C, Zhang Z, Quettier AL, Maldiney R, Bonnet M, Brault M, Demandre C, Miginiac E, Rona JP, Sotta B, Jeannette E (2005) Diacylglycerol pyrophosphate is a second messenger of abscisic acid signaling in Arabidopsis thaliana suspension cells. Plant J 42:145–152

    Article  PubMed  CAS  Google Scholar 

  • Zalejski C, Paradis S, Maldiney R, Habricot Y, Miginiac E, Rona JP, Jeannette E (2006) Induction of abscisic acid-regulated gene expression by diacylglycerol pyrophosphate involves Ca2+ and anion currents in Arabidopsis suspension cells. Plant Physiol 141:1555–1562

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sébastien Mongrand .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Furt, F., Simon-Plas, F., Mongrand, S. (2011). Lipids of the Plant Plasma Membrane. In: Murphy, A., Schulz, B., Peer, W. (eds) The Plant Plasma Membrane. Plant Cell Monographs, vol 19. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13431-9_1

Download citation

Publish with us

Policies and ethics