Skip to main content

Time Accounting Artificial Neural Networks for Biochemical Process Models

  • Chapter
  • 618 Accesses

Part of the book series: Studies in Computational Intelligence ((SCI,volume 299))

Abstract

This paper is focused on developing more efficient computational schemes for modeling in biochemical processes. A theoretical framework for estimation of process kinetic rates based on different temporal (time accounting) Artificial Neural Network (ANN) architectures is introduced. Three ANNs that explicitly consider temporal aspects of modeling are exemplified: i) Recurrent Neural Network (RNN) with global feedback (from the network output to the network input); ii) Time Lagged Feedforward Neural Network (TLFN) and iii) Reservoir Computing Network (RCN). Crystallization growth rate estimation is the benchmark for testing the methodology. The proposed hybrid (dynamical ANN & analytical submodel) schemes are promising modeling framework when the process is strongly nonlinear and particularly when input-output data is the only information available.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Antonelo, E.A., Schrauwen, B., Campenhout, J.V.: Generative modeling of autonomous robots and their environments using reservoir computing. Neural Processing Letters 26(3), 233–249 (2007)

    Article  Google Scholar 

  2. Bastin, G., Dochain, D.: On-line estimation and adaptive control of bioreactors. Elsevier Science Publishers, Amsterdam (1990)

    Google Scholar 

  3. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, Heidelberg (2006)

    MATH  Google Scholar 

  4. Chen, L., Bastin, G.: Structural identifiability of the yeals coefficients in bioprocess models when the reaction rates are unknown. Mathematical Biosciences 132, 35–67 (1996)

    Article  MATH  Google Scholar 

  5. Georgieva, P., Meireles, M.J., Feyo de Azevedo, S.: Knowledge Based Hybrid Modeling of a Batch Crystallization When Accounting for Nucleation, Growth and Agglomeration Phenomena. Chem. Eng. Science 58, 3699–3707 (2003)

    Article  Google Scholar 

  6. Hagan, M.T., Demuth, H.B., Beale, M.H.: Neural Network Design. PWS Publishing, Boston (1996)

    Google Scholar 

  7. Haykin, S.: Neural Networks: A Comprehensive Foundation. Prentice-Hall, NJ (1999)

    MATH  Google Scholar 

  8. Jaeger, H.: The “echo state” approach to analysing and training recurrent neural networks. Technical Report GMD Report 148, German National Research Center for Information Technology (2001a)

    Google Scholar 

  9. Maass, W., Natschlager, T., Markram, H.: Real-time computing without stable states: A new framework for neural computation based on perturbations. Neural Computation 14(11), 2531–2560 (2002)

    Article  MATH  Google Scholar 

  10. Mandic, D.P., Chambers, J.A.: Recurrent Neural Networks for Prediction: Learning Algorithms, Architectures and Stability (Adaptive & Learning Systems for Signal Processing, Communications & Control). Wiley, Chichester (2001)

    Google Scholar 

  11. Noykove, N., Muller, T.G., Gylenberg, M., Timmer, J.: Quantitative analysis of anaerobic wastewater treatment processes: identifiably and parameter estimation. Biotechnology and bioengineering 78(1), 91–103 (2002)

    Google Scholar 

  12. Oliveira, C., Georgieva, P., Rocha, F., Feyo de Azevedo, S.: Artificial Neural Networks for Modeling in Reaction Process Systems. In: Neural Computing & Applications, vol. 18, pp. 15–24. Springer, Heidelberg (2009)

    Google Scholar 

  13. Principe, J.C., Euliano, N.R., Lefebvre, W.C.: Neural and adaptive systems: Fundamentals through simulations, New York (2000)

    Google Scholar 

  14. Steil, J.J.: Backpropagation-Decorrelation: Online recurrent learning with O(N) complexity. In: Proc. Int. Joint Conf. on Neural Networks (IJCNN), vol. 1, pp. 843–848 (2004)

    Google Scholar 

  15. Walter, E., Pronzato, L.: Identification of parametric models from experimental data. Springer, UK (1997)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Georgieva, P., Suárez, L.A.P., de Azevedo, S.F. (2010). Time Accounting Artificial Neural Networks for Biochemical Process Models. In: Sgurev, V., Hadjiski, M., Kacprzyk, J. (eds) Intelligent Systems: From Theory to Practice. Studies in Computational Intelligence, vol 299. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13428-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13428-9_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13427-2

  • Online ISBN: 978-3-642-13428-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics