Skip to main content

A Multi-purpose Time Series Data Standardization Method

  • Chapter
Intelligent Systems: From Theory to Practice

Part of the book series: Studies in Computational Intelligence ((SCI,volume 299))

Abstract

This work proposes a novel multi-purpose data standardization method inspired by gene-centric clustering approaches. The clustering is performed via template matching of expression profiles employing Dynamic Time Warping (DTW) alignment algorithm to measure the similarity between the profiles. In this way, for each gene profile a cluster consisting of a varying number of neighboring gene profiles (determined by the degree of similarity) is identified to be used in the subsequent standardization phase. The standardized profiles are extracted via a recursive aggregation algorithm, which reduces each cluster of neighboring expression profiles to a singe profile. The proposed data standardization method is validated on gene expression time series data coming from a study examining the global cell-cycle control of gene expression in fission yeast Schizosaccharomyces pombe.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aach, J., Church, G.M.: Aligning gene expression time series with time warping algorithms. Bioinformatics 17, 495–508 (2001)

    Article  Google Scholar 

  2. Box, G.E.P., Cox, D.R.: An analysis of transformation. Journal of R. Stat. Society B. 26, 211–243 (1964)

    MATH  MathSciNet  Google Scholar 

  3. Cheadle, C., Vawter, M.P., Freed, W.J., Becker, K.G.: Analysis of microarray data using Z score transformation. Journal of Molecular Diagnostics 5(2), 73–81 (2003)

    Google Scholar 

  4. Criel, J., Tsiporkova, E.: Gene Time Expression Warper: A tool for alignment, template matching and visualization of gene expression time series. Bioinformatics 22, 251–252 (2006)

    Article  Google Scholar 

  5. Durbin, B.P., Hardin, J.S., Hawkins, D.M., Rocke, D.M.: A variance-stabilizing transformation for gene-expression microarray data. Bioinformatics 18(suppl. 1), S105–S110 (2002)

    Google Scholar 

  6. Durbin, B.P., Rocke, D.M.: Estimation of transformation parameters for microarray data. Bioinformatics 19, 1360–1367 (2003)

    Article  Google Scholar 

  7. Fodor, J.C., Roubens, M.: Fuzzy Preference Modelling and Multicriteria Decision Support. Kluwer Academic Publishers, Dordrecht (1994)

    MATH  Google Scholar 

  8. Geller, S.C., Gregg, J.P., Hagerman, P., Rocke, D.M.: Transformation and normalization of oligonucleotide microarray data. Bioinformatics 19(14), 1817–1823 (2003)

    Article  Google Scholar 

  9. Hermans, F., Tsiporkova, E.: Merging microarray cell synchronization experiments through curve alignment. Bioinformatics 23, e64–e70 (2007)

    Google Scholar 

  10. Ideker, T., Thorsson, V., Siegel, A.F., Hood, L.E.: Testing for differentially-expressed genes by maximum-likelihood analysis of microarray data. Journal of Computational Biology 7, 805–817 (2001)

    Article  Google Scholar 

  11. Li, C., Wong, W.: Model-based analysis of oligonucleotide arrays: expression index computation and outlier detection. Proc. National Academy Science USA 98, 31–36 (2001)

    Article  MATH  Google Scholar 

  12. de Lichtenberg, U., Jensen, L.J., Fausbøll, A., Jensen, T.S., Bork, P., Brunak, S.: Comparison of computational methods for the identification of cell cycle-regulated genes. Bioinformatics 21(7), 1164–1171 (2004)

    Article  Google Scholar 

  13. Quackembush, J.: Microarray data normalization and transformation. Nature Genetics Supplement 32, 496–501 (2002)

    Article  Google Scholar 

  14. Rustici, G., Mata, J., Kivinen, K., Lio, P., Penkett, C.J., Burns, G., Hayles, J., Brazma, A., Nurse, P., Bähler, J.: Periodic gene expression program of the fission yeast cell cycle. Natural Genetics 36, 809–817 (2004)

    Article  Google Scholar 

  15. Sakoe, H., Chiba, S.: Dynamic programming algorithm optimization for spoken word recognition. IEEE Trans. on Acoust., Speech, and Signal Proc. ASSP-26, 43–49 (1978)

    Google Scholar 

  16. Sankoff, D., Kruskal, J.: Time Warps, String Edits, and Macromolecules: The Theory and Practice of Sequence Comparison. AddisonWesley, Reading Mass (1983)

    Google Scholar 

  17. Smyth, G.K., Speed, T.P.: Normalization of cDNA microarray data. Methods 31, 265–273 (2003)

    Article  Google Scholar 

  18. Sokal, R.R., Rohlf, F.J.: Biometry, 3rd edn. W.H. Freeman and Co., New York (1995)

    Google Scholar 

  19. Speed, T.: Always log spot intensities and ratio. Speed Group Microarray Page, http://www.stat.berkeley.edu/users/terry/zarray/Html/log.html

  20. Tsiporkova, E., Boeva, V.: Nonparametric recursive aggregation process. Kybernetika. Journal of the Czech Society for Cybernetics and Information Sciencies 40(1), 51–70 (2004)

    MathSciNet  Google Scholar 

  21. Tsiporkova, E., Boeva, V.: Multi-step ranking of alternatives in a multi-criteria and multi-expert decision making environment. Information Sciencies 76(18), 2673–2697 (2006)

    Article  MathSciNet  Google Scholar 

  22. Tsiporkova, E., Boeva, V.: Modelling and simulation of the genetic phenomena of additivity and dominance via gene networks of parallel aggregation processes. In: Hochreiter, S., Wagner, R. (eds.) BIRD 2007. LNCS (LNBI), vol. 4414, pp. 199–211. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  23. Tsiporkova, E., Boeva, V.: Two-pass imputation algorithm for missing value estimation in gene expression time series. Journal of Bioinformatics and Computational Biology 5(5), 1005–1022 (2007)

    Article  Google Scholar 

  24. Tsiporkova, E., Boeva, V.: Fusing Time Series Expression Data through Hybrid Aggregation and Hierarchical Merge. Bioinformatics 24(16), i63–i69 (2008)

    Google Scholar 

  25. Wentian, L., Suh, Y.J., Zhang, J.: Does Logarithm Transformation of Microarray Data Affect Ranking Order of Differentially Expressed Genes? In: Proc. Engineering in Medicine and Biology Society, EMBS 2006. 28th Annual International Conference of the IEEE, Suppl., pp. 6593–6596 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Boeva, V., Tsiporkova, E. (2010). A Multi-purpose Time Series Data Standardization Method. In: Sgurev, V., Hadjiski, M., Kacprzyk, J. (eds) Intelligent Systems: From Theory to Practice. Studies in Computational Intelligence, vol 299. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13428-9_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13428-9_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13427-2

  • Online ISBN: 978-3-642-13428-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics