Skip to main content

Multiagent-Based Approach for Risk Analysis in Mission Capability Planning

  • Chapter
Agent-Based Evolutionary Search

Part of the book series: Adaptation, Learning, and Optimization ((ALO,volume 5))

  • 1002 Accesses

Abstract

In this chapter, we propose a multiagent-based approach for risk analysis in military capability planning. A hierarchical system is introduced that has two layers: an Option Production Layer (OPL) to find all possible options for the given planning problem, and a Risk Tolerance Layer (RTL) in which DMs’ acceptance of risk is evolved. The OPL uses metaheuristic techniques such as evolutionary algorithms to deal with multi-objectivity of a class of NP-hard resource investment problems, called the Mission Capability Planning Problem (MCPP), under the presence of risk factors. This problem has at least two inherent conflicting objectives: minimizing the cost of investment in resources as well as optimizing the makespan of plans. The framework allows for the addition of a risk-based objective to the problem in order to support risk assessment during the planning process. The RTL is run by a multi-agent system which simulates the risk attitudes of DM. The system determines different types of attitudes towards risk with each type applying to a sub-set of MCPP solutions. The goal of each agent is to maximize its risk tolerance levels with respect to a given subset of solutions determined in the OPL. Risk tolerance levels are used as surrogates for risk attitudes. The hierarchical system is flexible in terms of using a feedback mechanism when necessary. The RTL uses information from the OPL and can itself return some hyper-information to guide the OPL further. In a case study, we use a mission planning scenario to validate our proposal. The results from this study demonstrate the advantage of our proposed system. A diverse set of agents was found; hence different types of options can be grouped and offered to the decision-makers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbasi, B., Shadrokh, S., Arkat, J.: Bi-objective resource-constrained project scheduling with robustness and makespan criteria. Applied Mathematics and Computation 180, 146–152 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aberdeen, D., Thiébaux, S., Zhang, L.: Decision-theoretic military operations planning. In: Proc. ICAPS, pp. 402–411. AAAI Press, Menlo Park (2004)

    Google Scholar 

  3. ADF: Defence Capability Development Manual. Australian Defence Publishing, Canberra, Australia (2006)

    Google Scholar 

  4. Alcaraz, J., Maroto, C.: A robust genetic algorithm for resource allocation in project scheduling. Annals of Operations Research 102(4), 83–109 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  5. Azaron, A., Tavakkoli-Moghaddam, R.: Multi-objective time cost trade-off in dynamic PERT networks using an interactive approach. European Journal of Operational Research 180, 1186–1200 (2007)

    Article  MATH  Google Scholar 

  6. Barlow, M., Easton, A.: Crocadile-an open, extensible agent-based distillation engine. Information & Security 8(1), 17–51 (2002)

    Google Scholar 

  7. Barlow, M., Yang, A., Abbass, H.: A Temporal Risk Assessment Framework for Planning A Future Force Structure. In: IEEE Symposium on Computational Intelligence in Security and Defense Applications, CISDA 2007, pp. 100–107 (2007)

    Google Scholar 

  8. Belfares, L., Klibi, W., Lo, N., Guitouni, A.: Multi-objective tabu search based algorithm for progressive resource allocation. European Journal of Operational Research 177, 1779–1799 (2007)

    Article  MATH  Google Scholar 

  9. Bier, V.: Challenges to the Acceptance of Probabilistic Risk Analysis. Risk Analysis 19(4), 703–710 (1999)

    Google Scholar 

  10. Blazewicz, J., Lenstra, J., Kan, A.R.: Scheduling subject to resource constraints: Classification and complexity. Discrete Applied Math. 5, 11–24 (1983)

    Article  MATH  Google Scholar 

  11. Boukhtouta, A., Bedrouni, A., Berger, J., Bouak, F., Guitouni, A.: A survey of military planning systems. In: The 9th ICCRTS Int. Command and Control Research and Technology Symposium, Copenhagen, Denmark (2004)

    Google Scholar 

  12. Brucker, P., Drexl, A., Mohring, R., Neumann, K.: Resource constrained project scheduling: Notation, classification, models and methods. European Journal of Operational Research 112, 3–41 (1999)

    Article  MATH  Google Scholar 

  13. Bui, L.T., Barlow, M.: Performance of path-planning agents in an agent-based distillation. In: Proceedings of SimTecT 2003, SIAA, Adelaide, Australia (2003)

    Google Scholar 

  14. Bui, L.T., Barlow, M., Abbass, H.A.: A Multiobjective Risk-based Framework for Mission Capability Planning. New Mathematics and Natural Computation 5(2), 459–485 (2009)

    Article  MATH  Google Scholar 

  15. Cabeza, A.Z., Ridao, M.A., Ridao, E.F., Camacho, E.F.: Using a risk-based approach to project scheduling: A case illustration from semiconductor manufacturing. European Journal of Operational Research 190(3), 708–723 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Carruthers, J.A., Battersby, A.: Advances in critical path methods. Operations research quarterly 17(4), 359–380 (1966)

    Article  Google Scholar 

  17. Center, A.: Risk Management: Multiservice Tactics, Techniques, and Procedures (2001)

    Google Scholar 

  18. Cheung, K.M., Ko, A., Dang, V., Heckman, D.: Risk Analysis for Non-Deterministic Mission Planning and Sequencing. In: 2005 IEEE Conference on Aerospace, pp. 1–12 (2005)

    Google Scholar 

  19. Demeulemeester, E.: Minimizing resource availability costs in time-limited project networks. Management Science 41(10), 1590–1598 (1995)

    Article  MATH  Google Scholar 

  20. Demeulemeester, E., Herroelen, W.: A branch-and-bound procedure for the multiple resource-constrained project scheduling problem. Management Science 38(12), 1803–1818 (1992)

    Article  MATH  Google Scholar 

  21. Drexl, A., Kimms, A.: Optimization guided lower and upper bounds for the resource investment problem. Journal of Operations Reseach Society 52, 340–351 (2001)

    Article  MATH  Google Scholar 

  22. Fischhoff, B.S., Watson, S.R.S., Hope, C.S.: Defining risk. Policy Sciences 17(2), 123–139 (1984)

    Article  Google Scholar 

  23. Gaidow, S., Boey, S.: Australian Defence Risk Management Framework: A Comparative Study. Defense Technical Information Center (2005)

    Google Scholar 

  24. Gallagher, B., Pamela, J.: A Taxonomy of Operational Risks. Carnegie Mellon University, Software Engineering Institute (2005)

    Google Scholar 

  25. Greenland, S.: Sensitivity Analysis, Monte Carlo Risk Analysis, and Bayesian Uncertainty Assessment. Risk Analysis 21(4), 579–584 (2001)

    Article  Google Scholar 

  26. Hindi, K.S., Yang, H., Fleszar, K.: An evolutionary algorithm for resource-constrained project scheduling. IEEE Trans. on Evolutionary Computation 6(5), 512–518 (2002)

    Article  Google Scholar 

  27. Holmgren, Å.: Using Graph Models to Analyze the Vulnerability of Electric Power Networks. Risk Analysis 26(4), 955–969 (2006)

    Article  Google Scholar 

  28. Hsu, C.C., Kim, D.: A new heuristic for multi-mode resource investment problem. Journal of Operations Reseach Society 56, 406–413 (2005)

    Article  MATH  Google Scholar 

  29. Kewley, R., Embrechts, M.: Computational military tactical planning system. IEEE Trans. on Systems, Man, and Cybernetics, Part C 32(2), 161–171 (2002)

    Article  Google Scholar 

  30. Kolishch, R., Hartmann, S.: Experimental investigation of heuristic for resource constrained project scheduling: An update. European Journal of Operational Research 174, 23–37 (2006)

    Article  Google Scholar 

  31. Leung, J.: Handbook of scheduling: algorithms, models, and performance analysis. Chapman & Hall/CRC (2004)

    Google Scholar 

  32. Merkle, D., Middendorf, M., Schmeck, H.: Ant colony optimization for resource-constrained project scheduling. IEEE Trans. on Evolutionary Computation 6(4), 333–346 (2002)

    Article  Google Scholar 

  33. Mohring, R.: Minimizing costs of resource requirements in project networks subject to a fixed completion. Operations Research 31(1), 89–119 (1984)

    Article  MathSciNet  Google Scholar 

  34. Nagar, A., Haddock, J., Heragu, S.: Multiple and bi-criteria scheduling: a literature survey. European Journal of Operational Research 81, 88–104 (1995)

    Article  MATH  Google Scholar 

  35. NATO: Handbook on Long term Defence Planning. St. Joseph Print Group Inc., Canada (2003)

    Google Scholar 

  36. Neumann, K., Zimmermann, J.: Resource levelling for projects with schedule-dependent time windows. European Journal of Operational Research 117, 591–605 (1999)

    Article  MATH  Google Scholar 

  37. Pinedo, M.: Scheduling: Theory, Algorithms, and Systems, 2nd edn. Prentice Hall, NJ (2001)

    Google Scholar 

  38. Radford, K.J.: Strategic Planning: an Analytical Approach. Reston Pub. Co., Reston (1980)

    Google Scholar 

  39. Renn, O.: Three decades of risk research: accomplishments and new challenges. Journal of Risk Research 1(1), 49–71 (1998)

    Article  Google Scholar 

  40. Rockafellar, R., Uryasev, S.: Optimization of conditional value-at-risk. Journal of Risk 2(3), 21–41 (2000)

    Google Scholar 

  41. Schlabach, J., Hayes, C., Goldberg, D.: FOX-GA: A genetic algorithm for generating and analysing battlefield courses of action. Evolutionary Computation 7(1), 45–68 (1999)

    Article  Google Scholar 

  42. Shadrokh, S., Kianfar, F.: A genetic algorithm for resource investment project scheduling problem, tardiness permitted with penalty. European Journal of Operational Research 181, 86–101 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  43. Slowinski, R.: Multiobjective project scheduling under multiple-category resource constraints. In: Advances in project Scheduling. Elsevier, Amsterdam (1989)

    Google Scholar 

  44. Smith, J., Egglestone, G., Farr, P., Moon, T., Saunders, D.: Technical Risk Assessment of Australian Defence Projects. DSTO Information Sciences Laboratory (2004)

    Google Scholar 

  45. Torrellas, G.: A Framework for Multi-Agent System Engineering using Ontology Domain Modelling for Security Architecture Risk Assessment in E-Commerce Security Services. In: Proceedings of the Network Computing and Applications, Third IEEE International Symposium on (NCA 2004), vol. 00, pp. 409–412 (2004)

    Google Scholar 

  46. TTCP: The guide to capability-based planning. Tech. Rep. TR-JSA-TP3-2-2004, The Technical Cooperation Program (2004)

    Google Scholar 

  47. US Department of the Army: FM 5-19: Composite Risk Management (2006)

    Google Scholar 

  48. Viana, A., de Sousa, J.P.: Using metaheuristics in multiobjective resource constrained project scheduling. European Journal of Operational Research 120, 359–374 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  49. Willis, H.: Estimating Terrorism Risk. RAND Corporation (2005)

    Google Scholar 

  50. Woolridge, M., Wooldridge, M.: Introduction to multiagent systems. John Wiley & Sons, Inc., New York (2001)

    Google Scholar 

  51. Yacoub, S., Ammar, H.: A methodology for architecture-level reliability risk analysis. IEEE Transactions on Software Engineering 28(6), 529–547 (2002)

    Article  Google Scholar 

  52. Yamashita, D., Armentano, V.A., Laguna, M.: Scatter search for project scheduling with resource availability cost. European Journal of Operational Research 169, 623–637 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  53. Yang, A., Abbass, H.A., Sarker, R.A.: Characterizing warfare in red teaming. IEEE Transactions on Systems, Man, and Cybernetics, Part B 36(2), 268–285 (2006)

    Article  Google Scholar 

  54. Zhong, W., Liu, J., Xue, M., Jiao, L.: A multiagent genetic algorithm for global numerical optimization. IEEE Transactions on Systems, Man, and Cybernetics, Part B 34(2), 1128–1141 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bui, L.T., Bender, A., Barlow, M., Abbass, H.A. (2010). Multiagent-Based Approach for Risk Analysis in Mission Capability Planning. In: Sarker, R.A., Ray, T. (eds) Agent-Based Evolutionary Search. Adaptation, Learning, and Optimization, vol 5. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13425-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13425-8_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13424-1

  • Online ISBN: 978-3-642-13425-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics