A Subdivision Approach to Planar Semi-algebraic Sets

  • Angelos Mantzaflaris
  • Bernard Mourrain
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6130)


Semi-algebraic sets occur naturally when dealing with implicit models and boolean operations between them. In this work we present an algorithm to efficiently and in a certified way compute the connected components of semi-algebraic sets given by intersection or union of conjunctions of bi-variate equalities and inequalities. For any given precision, this algorithm can also provide a polygonal and isotopic approximation of the exact set. The idea is to localize the boundary curves by subdividing the space and then deduce their shape within small enough cells using only boundary information. Then a systematic traversal of the boundary curve graph yields polygonal regions isotopic to the connected components of the semi-algebraic set. Space subdivision is supported by a kd-tree structure and localization is done using Bernstein representation. We conclude by demonstrating our C++ implementation in the CAS Mathemagix.


subdivision algorithm semi-algebraic set connected component algebraic curve topology computation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alberti, L., Mourrain, B., Wintz, J.: Topology and Arrangement Computation of Semi-algebraic Planar Curves. Comput. Aided Geom. Des. 25(8), 631–651 (2008)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Basu, S., Pollack, R., Roy, M.-F.: Complexity of computing semi-algebraic descriptions of the connected components of a semi-algebraic set. In: ISSAC 1998: Proceedings of the 1998 international symposium on Symbolic and algebraic computation, pp. 25–29. ACM, New York (1998)CrossRefGoogle Scholar
  3. 3.
    Basu, S., Pollack, R., Roy, M.-F.: Algorithms in Real Algebraic Geometry. Springer, Berlin (2003)zbMATHGoogle Scholar
  4. 4.
    Bentley, J.L.: Multidimensional divide-and-conquer. Commun. ACM 23(4), 214–229 (1980)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Bochnak, J., Coste, M., Roy, M.-F.: Géométrie Algébrique Réelle. Springer, Heidelberg (1987)zbMATHGoogle Scholar
  6. 6.
    Collins, G.E.: Quantifier elimination for real closed fields by cylindrical algebraic decomposition. In: Brakhage, H. (ed.) GI-Fachtagung 1975. LNCS, vol. 33, pp. 134–183. Springer, Heidelberg (1975)Google Scholar
  7. 7.
    Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 2nd edn. MIT Press, Cambridge (2001)zbMATHGoogle Scholar
  8. 8.
    Coste, M.: An introduction to semi-algebraic geometry. RAAG network school (2002)Google Scholar
  9. 9.
    Emiris, I.Z., Tsigaridas, E.P., Tzoumas, G.M.: Exact delaunay graph of smooth convex pseudo-circles: general predicates, and implementation for ellipses. In: SPM 2009: 2009 SIAM/ACM Joint Conference on Geometric and Physical Modeling, pp. 211–222. ACM, New York (2009)CrossRefGoogle Scholar
  10. 10.
    Farin, G.: Curves and Surfaces for CAGD: A Practical Guide. Morgan Kaufmann Publishers Inc., San Francisco (2002)Google Scholar
  11. 11.
    Hardt, R.M.: Triangulation of Subanalytic Sets and proper light subanalytic maps. Invent. Math. 38(3), 207–217 (1976/1977)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Henrion, D., Lasserre, J.-B., Lofberg, J.: GloptiPoly 3: Moments, Optimization and Semidefinite Programming. Optimization Methods and Software 24(4-5), 761–779 (2009)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Hironaka, H.: Triangulations of algebraic sets. In: Algebraic geometry, Proc. Sympos. Pure Math., Humboldt State Univ., Arcata, Calif., 1974, vol. 29, pp. 165–185. Amer. Math. Soc., Providence (1975)Google Scholar
  14. 14.
    Khimšiašvili, G.N.: The local degree of a smooth mapping. Sakharth. SSR Mecn. Akad. Moambe 85(2), 309–312 (1977)MathSciNetGoogle Scholar
  15. 15.
    Lasserre, J.B.: Moments, Positive Polynomials and their Applications. Optimization Series, vol. 1. Imperial College Press, London (2009)Google Scholar
  16. 16.
    Mourrain, B., Pavone, J.P.: Subdivision methods for solving polynomial equations. J. Symb. Comput. 44(3), 292–306 (2009)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Stenger, F.: Computing the topological degree of a mapping in \({\mathbb R}^{n}\). Numer. Math. 25(1), 23–38 (1975)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Tarski, A.: A decision method for elementary algebra and geometry. Univ. of California Press, Berkeley (1951)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Angelos Mantzaflaris
    • 1
  • Bernard Mourrain
    • 1
  1. 1.GALAADINRIA MéditerranéeSophia-AntipolisFrance

Personalised recommendations