Skip to main content

A Subdivision Approach to Planar Semi-algebraic Sets

  • Conference paper
Advances in Geometric Modeling and Processing (GMP 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6130))

Included in the following conference series:

Abstract

Semi-algebraic sets occur naturally when dealing with implicit models and boolean operations between them. In this work we present an algorithm to efficiently and in a certified way compute the connected components of semi-algebraic sets given by intersection or union of conjunctions of bi-variate equalities and inequalities. For any given precision, this algorithm can also provide a polygonal and isotopic approximation of the exact set. The idea is to localize the boundary curves by subdividing the space and then deduce their shape within small enough cells using only boundary information. Then a systematic traversal of the boundary curve graph yields polygonal regions isotopic to the connected components of the semi-algebraic set. Space subdivision is supported by a kd-tree structure and localization is done using Bernstein representation. We conclude by demonstrating our C++ implementation in the CAS Mathemagix.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alberti, L., Mourrain, B., Wintz, J.: Topology and Arrangement Computation of Semi-algebraic Planar Curves. Comput. Aided Geom. Des. 25(8), 631–651 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  2. Basu, S., Pollack, R., Roy, M.-F.: Complexity of computing semi-algebraic descriptions of the connected components of a semi-algebraic set. In: ISSAC 1998: Proceedings of the 1998 international symposium on Symbolic and algebraic computation, pp. 25–29. ACM, New York (1998)

    Chapter  Google Scholar 

  3. Basu, S., Pollack, R., Roy, M.-F.: Algorithms in Real Algebraic Geometry. Springer, Berlin (2003)

    MATH  Google Scholar 

  4. Bentley, J.L.: Multidimensional divide-and-conquer. Commun. ACM 23(4), 214–229 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bochnak, J., Coste, M., Roy, M.-F.: Géométrie Algébrique Réelle. Springer, Heidelberg (1987)

    MATH  Google Scholar 

  6. Collins, G.E.: Quantifier elimination for real closed fields by cylindrical algebraic decomposition. In: Brakhage, H. (ed.) GI-Fachtagung 1975. LNCS, vol. 33, pp. 134–183. Springer, Heidelberg (1975)

    Google Scholar 

  7. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 2nd edn. MIT Press, Cambridge (2001)

    MATH  Google Scholar 

  8. Coste, M.: An introduction to semi-algebraic geometry. RAAG network school (2002)

    Google Scholar 

  9. Emiris, I.Z., Tsigaridas, E.P., Tzoumas, G.M.: Exact delaunay graph of smooth convex pseudo-circles: general predicates, and implementation for ellipses. In: SPM 2009: 2009 SIAM/ACM Joint Conference on Geometric and Physical Modeling, pp. 211–222. ACM, New York (2009)

    Chapter  Google Scholar 

  10. Farin, G.: Curves and Surfaces for CAGD: A Practical Guide. Morgan Kaufmann Publishers Inc., San Francisco (2002)

    Google Scholar 

  11. Hardt, R.M.: Triangulation of Subanalytic Sets and proper light subanalytic maps. Invent. Math. 38(3), 207–217 (1976/1977)

    Article  MathSciNet  Google Scholar 

  12. Henrion, D., Lasserre, J.-B., Lofberg, J.: GloptiPoly 3: Moments, Optimization and Semidefinite Programming. Optimization Methods and Software 24(4-5), 761–779 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  13. Hironaka, H.: Triangulations of algebraic sets. In: Algebraic geometry, Proc. Sympos. Pure Math., Humboldt State Univ., Arcata, Calif., 1974, vol. 29, pp. 165–185. Amer. Math. Soc., Providence (1975)

    Google Scholar 

  14. Khimšiašvili, G.N.: The local degree of a smooth mapping. Sakharth. SSR Mecn. Akad. Moambe 85(2), 309–312 (1977)

    MathSciNet  Google Scholar 

  15. Lasserre, J.B.: Moments, Positive Polynomials and their Applications. Optimization Series, vol. 1. Imperial College Press, London (2009)

    Google Scholar 

  16. Mourrain, B., Pavone, J.P.: Subdivision methods for solving polynomial equations. J. Symb. Comput. 44(3), 292–306 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  17. Stenger, F.: Computing the topological degree of a mapping in \({\mathbb R}^{n}\). Numer. Math. 25(1), 23–38 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  18. Tarski, A.: A decision method for elementary algebra and geometry. Univ. of California Press, Berkeley (1951)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mantzaflaris, A., Mourrain, B. (2010). A Subdivision Approach to Planar Semi-algebraic Sets. In: Mourrain, B., Schaefer, S., Xu, G. (eds) Advances in Geometric Modeling and Processing. GMP 2010. Lecture Notes in Computer Science, vol 6130. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13411-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13411-1_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13410-4

  • Online ISBN: 978-3-642-13411-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics