Skip to main content

Computing the Distance between Canal Surfaces

  • Conference paper
Book cover Advances in Geometric Modeling and Processing (GMP 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6130))

Included in the following conference series:

Abstract

A canal surface is the envelope of a one-parameter set of moving spheres. We present an accurate and efficient method for computing the distance between two canal surfaces. First, we use a set of cone-spheres to enclose a canal surface. A cone-sphere is a surface generated by sweeping a sphere along a straight line segment with the radius of the sphere changing linearly; thus it is a truncated circular cone capped by spheres at the two ends. Then, for two canal surfaces we use the distances between their bounding cone-spheres to approximate their distance; the accuracy of this approximation is improved by subdividing the canal surfaces into more segments and use more cone-spheres to bound the segments, until a pre-specified threshold is reached. We present a method for computing tight bounding cone-spheres of a canal surface, which is an interesting problem in its own right. Based on it, we present a complete method for efficiently computing the distances between two canal surfaces using the distances among all pairs of their bounding cone-spheres. The key to its efficiency is a novel pruning technique that can eliminate most of the pairs of cone-spheres that do not contribute to the distance between the original canal surfaces. Experimental comparisons show that our method is more efficient than Lee et al’s method [13] for computing the distance between two complex objects composed of many canal surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cameron, S.: A comparison of two fast algorithm for computing the distance between convex polyhedra. IEEE Trans. on Robotics and Automation 13(6), 915–920 (1997)

    Article  Google Scholar 

  2. Chen, X.–D., Yong, J.–H., Zheng, G.–Q., Paul, J.–C., Sun, J.–G.: Computing minimum distance between two implicit algebraic surfaces. Computer-Aided Design 38, 1053–1061 (2006)

    Article  Google Scholar 

  3. Cho, H.C., Choi, H.I., Kwon, S.–H., Lee, D.S., Wee, N.–S.: Clifford algebra, Lorentzian geometry,and rational parametrization of canal surfaces. Computer Aided Geometric Design 21, 327–339 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  4. Choi, H.I., Kwon, S.-H., Wee, N.-S.: Almost rotation-minimizing rational parametrization of canal surfaces. Computer Aided Geometric Design 21, 859–881 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  5. Jia, J., Joneja, A., Tang, K.: Robustly Computing Intersection Curves of Two Canal Surfaces with Quadric Decomposition. In: Alexandrov, V.N., van Albada, G.D., Sloot, P.M.A., Dongarra, J. (eds.) ICCS 2006, Part II. LNCS, vol. 3992, pp. 342–349. Springer, Heidelberg (2006)

    Google Scholar 

  6. Johnson, D.E., Cohen, E.: A framework for efficient minimum distance computations. In: Proceedings of the IEEE conference on robotics and automation, pp. 3678–3684 (1998)

    Google Scholar 

  7. Kawachi, K., Suzuki, H.: Distance computation between non-convex polyhedra at short range based on discrete Voronoi regions. In: Proc. of Geometric Modeling and Processing, Hong Kong, pp. 123–128 (2000)

    Google Scholar 

  8. Kazakeviciute, M., Krasauskas, R.: Blending cylinders and cones using canal surfaces. In: Nonlinear Analysis: Modelling and Control, Vilnius, IMI, vol. 5, pp. 77–89 (2000)

    Google Scholar 

  9. Kim, K.-J.: Minimum distance between a canal surface and simple surface. Computer–Aided Design 35, 871–879 (2003)

    Article  Google Scholar 

  10. Kim, K.-J., Lee, I.-K.: The Perspective Silhouette of a Canal Surface. Computer Graphics forum 22, 15–22 (2003)

    Article  Google Scholar 

  11. Klosowski, J.T., Held, M., Mitchell, J.S.B., Sowizral, H., Zikan, K.: Efficient collision detection using bounding volume hierarchies of k-DOPs. IEEE Trans. on Visualization and Computer Graphics 4(1), 21–36 (1998)

    Article  Google Scholar 

  12. Larsen, E., Gottschalk, S., Lin, M.C., Manocha, D.: Fast Proximity Queries with Swept Sphere Volumes. In: Proceedings of IEEE Conference on Robotics and Automation (2000)

    Google Scholar 

  13. Lee, K., Seong, J.–K., Kim, K.–J., Hong, S.J.: Minimum distance between two sphere–swept surfaces. Computer-Aided Design 39, 452–459 (2007)

    Article  Google Scholar 

  14. Lee, I.-K., Kim, K.-J.: Shrinking: Another Method for Surface Reconstruction. In: Proceedings of the Geometric Modeling and Processing 2004 (GMP 2004), pp. 7695–2078 (2004)

    Google Scholar 

  15. Lin, M.C., Canny, J.F.: A fast algorithm for incremental distance calculation. In: Proc. of IEEE Int’l Conference on Robotics and Automation, Sacramento, Califonia, pp. 1008–1014 (1991)

    Google Scholar 

  16. Max, N.: Cone-Spheres. Computer Graphics 24, 59–62 (1990)

    Article  Google Scholar 

  17. Nishita, T., Johan, H.: A scan line algorithm for rendering curved tubular objects. In: Proc. of Pacific Graphics 1999, pp. 92–101 (1999)

    Google Scholar 

  18. Quinlan, S.: Efficient distance computation between non-convex objects. In: Proceedings of the IEEE Conference on Robotics and Automation, pp. 3324–3329 (1994)

    Google Scholar 

  19. Snyder, J., Woodbury, A., Fleischer, K., Currin, B., Barr, A.: Interval methods for multi-point collisions between time-dependent curved surfaces. In: Proc. of ACM SIGGRAPH 1993, pp. 321–334 (1993)

    Google Scholar 

  20. Kyung–ah, S., Juttler, B., Myung–soo, K., Wang, W.: Computing Distances Between Surfaces Using Line Geometry. In: Proceedings of the 10th Pacific Conference on Computer Graphics and Applications (PG 2002) (2002), ISBN: 0-7695-1784-6

    Google Scholar 

  21. van Wijk, J.J.: Ray tracing of objects defined by sweeping a sphere. In: Computer Graphics Forum (Eurographics 1984), pp. 73–82 (1984)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ma, Y., Tu, C., Wang, W. (2010). Computing the Distance between Canal Surfaces. In: Mourrain, B., Schaefer, S., Xu, G. (eds) Advances in Geometric Modeling and Processing. GMP 2010. Lecture Notes in Computer Science, vol 6130. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13411-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13411-1_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13410-4

  • Online ISBN: 978-3-642-13411-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics