Skip to main content

An Efficient Algorithm for the Sign Condition Problem in the Semi-algebraic Context

  • Conference paper
Advances in Geometric Modeling and Processing (GMP 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6130))

Included in the following conference series:

  • 1188 Accesses

Abstract

We study algebraic complexity of the sign condition problem for any given family of polynomials. Essentially, the problem consists in determining the sign condition satisfied by a fixed family of polynomials at a query point, performing as little arithmetic operations as possible. After defining precisely the sign condition and the point location problems, we introduce a method called the dialytic method to solve the first problem efficiently. This method involves a linearization of the original polynomials and provides the best known algorithm to solve the sign condition problem. Moreover, we prove a lower bound showing that the dialytic method is almost optimal. Finally, we extend our method to the point location problem.

The dialytic method solves (non-uniformly) the sign condition problem for a family of s polynomials in R[X 1,...,X n ] given by an arithmetic circuit \(\Gamma_{\mathcal F}\) of non-scalar complexity L performing \({\mathcal O}((L+n)^5\log(s))\) arithmetic operations.

If the polynomials are given in dense representation and d is a bound for their degrees, the complexity of our method is \({\mathcal O}(d^{5n} log(s))\). Comparable bounds are obtained for the point location problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bochnak, J., Coste, M., Roy, M.F.: Real Algebraic Geometry. Modern Surveys in Mathematics, vol. 36. Springer, Heidelberg (1998)

    MATH  Google Scholar 

  2. Bürgisser, P., Clausen, M., Shokrollahi, M.A.: Algebraic complexity theory. Grundlehren der mathematischen Wissenschaften. Springer, Heidelberg (1997)

    MATH  Google Scholar 

  3. Baur, W., Halupczok, H.: On lower bounds for the complexity of polynomials and their multiples. Computational Complexity 8(4), 309–315 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  4. Ben-Or, M.: Lower bounds for algebraic computation trees. In: STOC 1983: Proceedings of the fifteenth annual ACM symposium on Theory of computing, pp. 80–86. ACM, New York (1983)

    Chapter  Google Scholar 

  5. Basu, S., Pollack, R., Roy, M.F.: An asymptotically tight bound on the number of connected components of realizable sign conditions. Combinatorica (2009/2010) (to appear)

    Google Scholar 

  6. Basu, S., Pollack, R., Roy, M.-F.: Computing roadmaps of semi-algebraic sets on a variety. J. AMS 3(1), 55–82 (1999)

    MathSciNet  Google Scholar 

  7. Basu, S., Pollack, R., Roy, M.F.: Algorithms in real algebraic geometry. In: Algorithms and Computation in Mathematics, 2nd edn., vol. 10. Springer, Secaucus (2006)

    Google Scholar 

  8. Canny, J.F.: Computing roadmaps of general semi-algebraic sets. Comput. J. 36(5), 504–514 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  9. Chazelle, B., Edelsbrunner, H., Guibas, L.J., Sharir, M.: A singly-exponential stratification scheme for real semi-algebraic varieties and its applications. Theoretical Computer Science 84(1), 77–105 (1991)

    Article  MATH  Google Scholar 

  10. Canny, J.F., Grigoriev, D., Vorobjov, N.: Finding connected components of a simialgebraic set in subexponential time. Appl. Algebra Eng. Commun. Comput. 2, 217–238 (1991)

    Article  Google Scholar 

  11. Clarkson, K.L.: New applications of random sampling in computational geometry. Discrete & Computational Geometry 2(2), 195–222 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  12. Collins, G.E.: Hauptvortrag: Quantifier elimination for real closed fields by Cylindrical Algebraic Decomposition. Automata Theory and Formal Languages, 134–183 (1975)

    Google Scholar 

  13. Chazelle, B., Sharir, M.: An algorithm for generalized point location and its applications. J. Symb. Computation 10(3-4), 281–309 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  14. Dobkin, D.P., Lipton, R.J.: Multidimensional searching problems. SIAM J. Comput. 5(2), 181–186 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  15. Grigoriev, D., Heintz, J., Roy, M.F., Solern, P., Vorobjov, N.: Comptage des composantes connexes d’un ensemble semi-algbrique en temps simplement exponentiel. C.R. Acad. Sci. Paris 311, 879–882 (1990)

    Google Scholar 

  16. Gournay, L., Risler, J.J.: Construction of roadmaps in semi-algebraic sets. Appl. Algebra Eng. Commun. Comput. 4, 239–252 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  17. Grigoriev, D.: Complexity of deciding tarski algebra. J. Symb. Computation 5(1/2), 65–108 (1988)

    Article  Google Scholar 

  18. Grigoriev, D.: Topological complexity of the range searching. J. Complexity 16(1), 50–53 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  19. Grigoriev, D., Vorobjov, N.: Counting connected components of a semialgebraic set in subexponential time. Computational Complexity 2, 133–186 (1992)

    Article  MathSciNet  Google Scholar 

  20. Heintz, J., Roy, M.F., Solern, P.: Single exponential path finding in semialgebraic sets. Part 1: The case of a regular bounded hypersurface. In: Sakata, S. (ed.) AAECC 1990. LNCS, vol. 508, pp. 180–196. Springer, Heidelberg (1991)

    Google Scholar 

  21. Heintz, J., Roy, M.F., Solern, P.: Sur la complexit du principe de Tarski-Seidenberg. Bull. SMF 118, 101–126 (1990)

    MATH  Google Scholar 

  22. Heintz, J., Roy, M.F., Solern, P.: Description of the connected components of a semialgebraic in single exponential time. Discrete & Computational Geometry 11, 121–140 (1994)

    Google Scholar 

  23. Heintz, J., Roy, M.F., Solern, P.: Single exponential path finding in semi-algebraic sets II: The general case, Algebraic geometry and its applications, collections of papers from Abhyankar’s 60-th birthday conference, Purdue University, West-Lafayette (1994)

    Google Scholar 

  24. Jeronimo, G., Sabia, J.: On the number of sets definable by polynomials. J. of Algebra 227(2), 633–644 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  25. Khachiyan, L.G.: A polynomial algorithm in linear programming. Soviet Mathematics Doklady 20, 191–194 (1979)

    MATH  Google Scholar 

  26. Koiran, P.: Circuits versus trees in algebraic complexity. In: Reichel, H., Tison, S. (eds.) STACS 2000. LNCS, vol. 1770, pp. 35–52. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  27. Ganapathy, M.K., Babai, L., Ranyai, L.: On the number of zero-patterns of a sequence of polynomials. J. American Math. Soc. 14, 717–735 (2001)

    Article  MATH  Google Scholar 

  28. Lickteig, T.: On semialgebraic decision complexity, Technical Report TR-90-052, Int. Comput. Sc. Inst, Berkeley. Habilitationsschrift, Universitat Tubingen (1990)

    Google Scholar 

  29. Liddell, H.G., Scott, R., Jones, H.S., Mckenzie, R.: A greek-english lexicon. Clarendon Press, Oxford (1940)

    Google Scholar 

  30. Meyer auf der Heide, F.: A polynomial linear search algorithm for the n-dimensional knapsack problem. J. ACM 31(3), 668–676 (1984)

    MATH  MathSciNet  Google Scholar 

  31. Meyer auf der Heide, F.: Fast algorithms for n-dimensional restrictions of hard problems. J. ACM 35(3), 740–747 (1988)

    Google Scholar 

  32. Meiser, S.: Point location in arrangements of hyperplanes. Inf. Comput. 106(2), 286–303 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  33. Milnor, J.: On the Betti numbers of real varieties. Proc. AMS 15, 275–280 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  34. Snoeyink, J.: Point location. In: Goodman, J.E., O’Rourke, J. (eds.) Handbook of Discrete and Computational Geometry. CRC Press LLC, Boca Raton (2004)

    Google Scholar 

  35. Strassen, V.: The computational complexity of continued fractions. In: SYMSAC 1981: Proceedings of the fourth ACM symposium on Symbolic and algebraic computation, pp. 51–67. ACM, New York (1981)

    Chapter  Google Scholar 

  36. Sylvester, J.J.: Memoir on the dialytic method of elimination. Part I. Philosophical Magazine XXI, 534–539 (1842)

    Google Scholar 

  37. von zur Gathen, J.: Parallel arithmetic computations: a survey. In: Wiedermann, J., Gruska, J., Rovan, B. (eds.) MFCS 1986. LNCS, vol. 233, pp. 93–112. Springer, Heidelberg (1986)

    Chapter  Google Scholar 

  38. Warren, H.: Lower bounds for approximation of nonlinear manifolds. Trans. AMS 133, 167–178 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  39. Wegener, I.: The complexity of boolean functions. B. G. Teubner, and J. Wiley & Sons (1987)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Grimson, R. (2010). An Efficient Algorithm for the Sign Condition Problem in the Semi-algebraic Context. In: Mourrain, B., Schaefer, S., Xu, G. (eds) Advances in Geometric Modeling and Processing. GMP 2010. Lecture Notes in Computer Science, vol 6130. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13411-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13411-1_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13410-4

  • Online ISBN: 978-3-642-13411-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics