Advertisement

Support Function of Pythagorean Hodograph Cubics and G1 Hermite Interpolation

  • Eva Černohorská
  • Zbynek Šír
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6130)

Abstract

The Tschirnhausen cubic represents all non-degenerate Pythagorean Hododgraph cubics. We determine its support function and represent it as a convolution of a centrally symmetrical curve and a curve with linear normals. We use the support function to parametrize the Tschirnhausen cubic by normals. This parametrization is then used to an elegant and complete solution of the G 1 Hermite interpolation by Pythagorean Hodograph cubics. We apply the resulting algorithm to various examples and extend it to the interpolation by offsets of PH cubics.

Keywords

Support Function Interpolation Problem Interpolation Algorithm Hermite Interpolation Loop Condition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aigner, M., Gonzalez-Vega, L., Jüttler, B., Schicho, J.: Parameterizing surfaces with certain special support functions, including offsets of quadrics and rationally supported surfaces. Symbolic Comput. 44(2), 180–191 (2009)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Aigner, M., Gonzalez-Vega, L., Jüttler, B., Sampoli, M.L.: Computing isophotes on free-form surfaces based on support function approximation. In: Hancock, E.R., Martin, R.R., Sabin, M.A. (eds.) Mathematics of Surfaces XIII. LNCS, vol. 5654, pp. 1–18. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  3. 3.
    Bonnesen, T., Fenchel, W.: Theory of convex bodies. BCS Associates, Moscow (1987)zbMATHGoogle Scholar
  4. 4.
    Byrtus, M., Bastl, B.: G1 Hermite interpolation by PH cubics revisited. Submitted to Computer Aided Geometric Design, 20xxGoogle Scholar
  5. 5.
    Farouki, R.T., Sakkalis, T.: Pythagorean hodographs. IBM J. Res. Develop. 34, 736–752 (1990)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Farouki, R.T.: Pythagorean hodograph curves. In: Farin, G., Hoschek, J., Kim, M.-S. (eds.) Handbook of Computer Aided Geometric Design, pp. 405–427. North-Holland, AmsterdamGoogle Scholar
  7. 7.
    Farouki, R.T.: Pythagorean-hodograph curves: Algebra and Geometry Inseparable. In: Geometry and Computing. Springer, Heidelberg (2008)Google Scholar
  8. 8.
    Gravesen, J., Jüttler, B., Šír, Z.: On rationally supported surfaces. Comput. Aided Geom. Design 5(4-5), 320–331 (2008)Google Scholar
  9. 9.
    Gravesen, J.: Surfaces parametrised by the normals. Computing 79, 175–183 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Groemer, H.: Geometric Applications of Fourier Series and Spherical Harmonics. Cambridge University Press, Cambridge (1996)zbMATHCrossRefGoogle Scholar
  11. 11.
    Gruber, P.M., Wills, J.M.: Handbook of convex geometry. North–Holland, Amsterdam (1993)Google Scholar
  12. 12.
    Jüttler, B.: Hermite interpolation by Pythagorean hodograph curves of degree seven. Math. Comp. 70, 1089–1111 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Kubota, K.K.: Pythagorean Triples in Unique Factorization Domains. Amer. Math. Monthly 79, 503–505 (1972)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Meek, D.S., Walton, D.J.: Geometric Hermite interpolation with Tschirnhausen cubics. Journal of Computational and Applied Mathematics 81, 299–309 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Moon, H.P., Farouki, R.T., Choi, H.I.: Construction and shape analysis of PH quintic Hermite interpolants. Comp. Aided Geom. Design 18, 93–115 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Sabin, M.: A Class of Surfaces Closed under Five Important Geometric Operations, Technical report no. VTO/MS/207, British aircraft corporation (1974), http://www.damtp.cam.ac.uk/user/na/people/Malcolm/vtoms/vtos.htm
  17. 17.
    Šír, Z., Jüttler, B.: Constructing acceleration continuous tool paths using pythagorean hodograph curves. Mech. Mach. Theory 40(11), 1258–1272 (2005)zbMATHCrossRefGoogle Scholar
  18. 18.
    Šír, Z., Gravesen, J., Jüttler, B.: Curves and surfaces represented by polynomial support functions. Theor. Comput. Sci. 392(1-3), 141–157 (2008)zbMATHCrossRefGoogle Scholar
  19. 19.
    Šír, Z., Gravesen, J., Jüttler, B.: Computing Minkowski sums via Support Function Representation. In: Chenin, P., Lyche, T., Schumaker, L. (eds.) Curve and Surface Design: Avignon 2006, pp. 244–253. Nashboro Press, Brentwood (2007)Google Scholar
  20. 20.
    Šír, Z., Bastl, B., Lávička, M.: Hermite interpolation by hypocycloids and epicycloids with rational offsets. Comput. Aided Geom. Design (2010), doi:10.1016/j.cagd.2010.02.001Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Eva Černohorská
    • 1
  • Zbynek Šír
    • 1
  1. 1.Faculty of Mathematics and PhysicsCharles University in PraguePraha 8

Personalised recommendations