Efficient Point Projection to Freeform Curves and Surfaces

  • Young-Taek Oh
  • Yong-Joon Kim
  • Jieun Lee
  • Myung-Soo Kim
  • Gershon Elber
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6130)


We present an efficient algorithm for projecting a given point to its closest point on a family of freeform C 1-continuous curves and surfaces. The algorithm is based on an efficient culling technique that eliminates redundant curves and surfaces which obviously contain no projection from the given point. Based on this scheme, we can reduce the whole computation to considerably smaller subproblems, which are then solved using a numerical method. In several experimental results, we demonstrate the effectiveness of the proposed approach.


Distance Function Query Point Voronoi Cell Curve Segment Point Projection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lin, M.C., Gottschalk, S.: Collision detection between geometric models: A survey. In: Proc. of IMA Conference on Mathematics of Surfaces, pp. 37–56 (1998)Google Scholar
  2. 2.
    Lin, M.C., Manocha, D.: Collision and proximity queries. In: Goodman, J.E., O’Rourke, J. (eds.) Handbook of Discrete and Computational Geometry, 2nd edn., pp. 787–807. Chapman & Hall/CRC (2004)Google Scholar
  3. 3.
    Gilbert, E., Johnson, D., Keerthi, S.: A fast procedure for computing the distance between complex objects in three-dimensional space. IEEE Trans. Robot. Automat. 4, 193–203 (1988)CrossRefGoogle Scholar
  4. 4.
    Lin, M.C., Canny, J.: A fast algorithm for incremental distance calculation. In: IEEE Int. Conf. Robot. Automat., Sacramento, CA, April 1991, pp. 1008–1014 (1991)Google Scholar
  5. 5.
    Johnson, D.: Minimum distance queries for haptic rendering. PhD thesis, Computer Science Department, University of Utah (2005)Google Scholar
  6. 6.
    Chen, X.-D., Yong, J.-H., Wang, G., Paul, J.-C., Xu, G.: Computing minimum distance between a point and a NURBS curve. Computer-Aided Design 40(10-11), 1051–1054 (2008)CrossRefGoogle Scholar
  7. 7.
    Ma, Y.L., Hewitt, W.: Point inversion and projection for NURBS curve and surface: control polygon approach. Computer Aided Geometric Design 20(2), 79–99 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Selimovic, I.: Improved algorithms for the projection of points on NURBS curves and surfaces. Computer Aided Geometric Design 23(5), 439–445 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Hu, S.-M., Wallner, J.: A second order algorithm for orthogonal projection onto curves and surfaces. Computer Aided Geometric Design 22(3), 251–260 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Liu, X.-M., Yang, L., Yong, J.-H., Gu, H.-J., Sun, J.-G.: A torus patch approximation approach for point projection on surfaces. Computer Aided Geometric Design 26(5), 593–598 (2009)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Chen, X.-D., Chen, L., Wang, Y., Xu, G., Yong, J.-H.: Computing the minimum distance between Bezier curves. Journal of Computational and Applied Mathematics 230(1), 294–310 (2009)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Elber, G., Kim, M.-S.: Geometric constraint solver using multivariate rational spline functions. In: Proc. of the Sixth ACM Symposium on Solid Modeling and Applications, pp. 1–10 (2001)Google Scholar
  13. 13.
    Klosowski, J., Held, M., Mitchell, J., Sowizral, H., Zikan, K.: Efficient collision detection using bounding volume hierarchies of k-dops. IEEE Trans. on Visualization and Computer Graphics 4(1), 21–37 (1998)CrossRefGoogle Scholar
  14. 14.
    Sederberg, T.W., Nishita, T.: Curve intersection using Bézier clipping. Computer-Aided Design 22(9), 337–345 (1990)CrossRefGoogle Scholar
  15. 15.
    Nishita, T., Sederberg, T.W., Kakimoto, M.: Ray tracing trimmed rational surface patches. Computer Graphics 24(4), 337–345 (1990)CrossRefGoogle Scholar
  16. 16.
    Press, W., Teukolsky, S., Vetterling, W., Flannery, B.: Numerical Recipes: The Art of Scientific Computing, 3rd edn. Cambridge University Press, Cambridge (2007)zbMATHGoogle Scholar
  17. 17.
    IRIT 9.5 User’s Manual, Technion,

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Young-Taek Oh
    • 1
  • Yong-Joon Kim
    • 1
  • Jieun Lee
    • 2
  • Myung-Soo Kim
    • 1
  • Gershon Elber
    • 3
  1. 1.School of Computer Science and Eng.Seoul National Univ.SeoulKorea
  2. 2.School of Computer Science and Eng.Chosun Univ.KwangjuKorea
  3. 3.Computer Science DepartmentTechnionHaifaIsrael

Personalised recommendations