Skip to main content

Efficient Point Projection to Freeform Curves and Surfaces

  • Conference paper
Advances in Geometric Modeling and Processing (GMP 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6130))

Included in the following conference series:

Abstract

We present an efficient algorithm for projecting a given point to its closest point on a family of freeform C 1-continuous curves and surfaces. The algorithm is based on an efficient culling technique that eliminates redundant curves and surfaces which obviously contain no projection from the given point. Based on this scheme, we can reduce the whole computation to considerably smaller subproblems, which are then solved using a numerical method. In several experimental results, we demonstrate the effectiveness of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lin, M.C., Gottschalk, S.: Collision detection between geometric models: A survey. In: Proc. of IMA Conference on Mathematics of Surfaces, pp. 37–56 (1998)

    Google Scholar 

  2. Lin, M.C., Manocha, D.: Collision and proximity queries. In: Goodman, J.E., O’Rourke, J. (eds.) Handbook of Discrete and Computational Geometry, 2nd edn., pp. 787–807. Chapman & Hall/CRC (2004)

    Google Scholar 

  3. Gilbert, E., Johnson, D., Keerthi, S.: A fast procedure for computing the distance between complex objects in three-dimensional space. IEEE Trans. Robot. Automat. 4, 193–203 (1988)

    Article  Google Scholar 

  4. Lin, M.C., Canny, J.: A fast algorithm for incremental distance calculation. In: IEEE Int. Conf. Robot. Automat., Sacramento, CA, April 1991, pp. 1008–1014 (1991)

    Google Scholar 

  5. Johnson, D.: Minimum distance queries for haptic rendering. PhD thesis, Computer Science Department, University of Utah (2005)

    Google Scholar 

  6. Chen, X.-D., Yong, J.-H., Wang, G., Paul, J.-C., Xu, G.: Computing minimum distance between a point and a NURBS curve. Computer-Aided Design 40(10-11), 1051–1054 (2008)

    Article  Google Scholar 

  7. Ma, Y.L., Hewitt, W.: Point inversion and projection for NURBS curve and surface: control polygon approach. Computer Aided Geometric Design 20(2), 79–99 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  8. Selimovic, I.: Improved algorithms for the projection of points on NURBS curves and surfaces. Computer Aided Geometric Design 23(5), 439–445 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  9. Hu, S.-M., Wallner, J.: A second order algorithm for orthogonal projection onto curves and surfaces. Computer Aided Geometric Design 22(3), 251–260 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  10. Liu, X.-M., Yang, L., Yong, J.-H., Gu, H.-J., Sun, J.-G.: A torus patch approximation approach for point projection on surfaces. Computer Aided Geometric Design 26(5), 593–598 (2009)

    Article  MathSciNet  Google Scholar 

  11. Chen, X.-D., Chen, L., Wang, Y., Xu, G., Yong, J.-H.: Computing the minimum distance between Bezier curves. Journal of Computational and Applied Mathematics 230(1), 294–310 (2009)

    Article  MathSciNet  Google Scholar 

  12. Elber, G., Kim, M.-S.: Geometric constraint solver using multivariate rational spline functions. In: Proc. of the Sixth ACM Symposium on Solid Modeling and Applications, pp. 1–10 (2001)

    Google Scholar 

  13. Klosowski, J., Held, M., Mitchell, J., Sowizral, H., Zikan, K.: Efficient collision detection using bounding volume hierarchies of k-dops. IEEE Trans. on Visualization and Computer Graphics 4(1), 21–37 (1998)

    Article  Google Scholar 

  14. Sederberg, T.W., Nishita, T.: Curve intersection using Bézier clipping. Computer-Aided Design 22(9), 337–345 (1990)

    Article  Google Scholar 

  15. Nishita, T., Sederberg, T.W., Kakimoto, M.: Ray tracing trimmed rational surface patches. Computer Graphics 24(4), 337–345 (1990)

    Article  Google Scholar 

  16. Press, W., Teukolsky, S., Vetterling, W., Flannery, B.: Numerical Recipes: The Art of Scientific Computing, 3rd edn. Cambridge University Press, Cambridge (2007)

    MATH  Google Scholar 

  17. IRIT 9.5 User’s Manual, Technion, http://www.cs.technion.ac.il/~irit

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Oh, YT., Kim, YJ., Lee, J., Kim, MS., Elber, G. (2010). Efficient Point Projection to Freeform Curves and Surfaces. In: Mourrain, B., Schaefer, S., Xu, G. (eds) Advances in Geometric Modeling and Processing. GMP 2010. Lecture Notes in Computer Science, vol 6130. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13411-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13411-1_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13410-4

  • Online ISBN: 978-3-642-13411-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics