G1 Bézier Surface Generation from Given Boundary Curve Network with T-Junction

  • Min-jae Oh
  • Sung Ha Park
  • Tae-wan Kim
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6130)


T-junctions usually appear in surface modeling processes that start with a given curve network. However, since T-shaped patches are not available in current CAD system so existing G 1 surface generation methods are restricted to n-sided patches. Therefore a designer must design a curve network without T-junctions, or subdivide it into n-sided patches, to avoid T-shaped topologies. We generate G 1 Bézier surfaces at a T-junction by combining the coplanar G 1 continuity condition with the de Casteljau algorithm to avoid the collision of twist points. Both T-junctions in the middle of boundary curves and at 3-valent vertices are considered. Our method requires no subdivision or triangulation of the surface, and the curve network is not changed.


Control Point Boundary Curve Edge Condition Surface Generation Subdivision Scheme 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Farin, G.: Curves and surfaces for CAGD: A Practical Guide, 5th edn. Morgan Kaufmann, San Francisco (2002)Google Scholar
  2. 2.
    Bézier, P.: Essai de définition numérique des courbes et des surfaces expérimentales. PhD thesis, Université Pierre et Marie Curie, Paris (1977)Google Scholar
  3. 3.
    Farin, G.: A construction for visual C 1 continuity of polynomial surface patches. Computer Graphics and Image Processing 20, 272–282 (1982)zbMATHCrossRefGoogle Scholar
  4. 4.
    Sarraga, R.: G 1 interpolation of generally unrestricted cubic Bézier curves. Computer Aided Geometric Design 4, 23–40 (1987)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Du, W.H., Schimitt, F.J.M.: On the G 1 continuity of piecewise Bézier surfaces: a review with new results. Computer-Aided Design 22, 556–573 (1990)zbMATHCrossRefGoogle Scholar
  6. 6.
    Liu, Q., Sun, T.C.: G 1 interpolation of mesh curves. Computer-Aided Design 26(4), 259–267 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Peters, J.: Local smooth surface interpolation: a classification. Computer Aided Geometric Design 7, 191–195 (1990)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Piper, B.: Visually smooth interpolation with triangular Bézier patches. In: Farin, G. (ed.) Geometric Modeling: Algorithms and New Trends, pp. 221–233. SIAM, Philadelphia (1987)Google Scholar
  9. 9.
    Shirman, L.A., Séquin, C.H.: Local surface interpolation with Bézier patches. Computer Aided Geometric Design 4, 279–295 (1987)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Loop, C.: A G 1 triangular spline surface of arbitrary topological type. Computer Aided Geometric Design 11, 303–330 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Hanmann, S., Bonneau, G.P.: Triangular G 1 interpolation by 4-splitting domain triangles. Computer Aided Geometric Design 17, 731–757 (2000)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Liu, Y., Mann, S.: Parametric triangular Bézier surface interpolation with approximate continuity. In: Proceedings of the 2008 ACM Symposium on Solid and Physical Modeling, pp. 381–387 (2008)Google Scholar
  13. 13.
    Cho, D.Y., Lee, K.Y., Kim, T.W.: Interpolating G 1 Bézier surfaces over irregular curve networks for ship hull design. Computer-Aided Design 38, 641–660 (2006)CrossRefGoogle Scholar
  14. 14.
    Cho, D.Y., Lee, K.Y., Kim, T.W.: Analysis and avoidance of singularities for local G 1 surface interpolation of Bézier curve network with 4-valent nodes. Computing 79, 261–279 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Tong, W.H., Kim, T.W.: Local and singularity-free G 1 triangular spline surfaces using a minimum degree scheme. Computing 86(2-3), 235–255 (2009)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Tong, W.H., Kim, T.W.: High-order approximation of implicit surfaces by G 1 triangular spline surfaces. Computer-Aided Design 41, 441–455 (2009)CrossRefGoogle Scholar
  17. 17.
    Sederberg, T.W., Zheng, J., Bakenov, A., Nasri, A.: T-spline simplilcation and local refinement. ACM Transactions on Graphics 22(3), 477–484 (2003)CrossRefGoogle Scholar
  18. 18.
    Deng, J., Chen, F., Li, X., Hu, C., Tong, W., Yang, Z., Feng, Y.: Polynomial splines over hierarchical T-meshes. Graphical Models 70(4), 76–86 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Min-jae Oh
    • 1
  • Sung Ha Park
    • 1
  • Tae-wan Kim
    • 2
  1. 1.Department of Naval Architecture and Ocean EngineeringSeoul National UniversitySeoulRepublic of Korea
  2. 2.Department of Naval Architecture and Ocean Engineering, and Research Institute of Marine Systems EngineeringSeoul National UniversitySeoulRepublic of Korea

Personalised recommendations